MASINDE MULIRO UNIVERSITY OF SCIENCE AND **TECHNOLOGY** (MMUST) # UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR # FIRST YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE (PURE MATHEMATICS) **COURSE CODE:** **MAT 808** **COURSE TITLE:** **FUNCTIONAL ANALYSIS II** DATE: Thursday 20th April 2023 **TIME:** 8.00 am - 11.00 am INSTRUCTIONS TO CANDIDATES Answer ANY THREE questions Time: 3 hours This Paper Consists of 3 Printed Pages. Please Turn Over. #### **QUESTION ONE** #### (20 MARKS) Let H be a Hilbert space and $T \in B(H)$ be a bounded linear operator on H. Show that | i. | The adjoint of T , T^* is unique, linear and bounded | (10 marks) | |------|--|------------| | ii. | $ T^* = T $ | (3 marks) | | iii. | $ T^*T = T ^2$ | (3 marks) | | iv. | $(T^*)^* = T$ | (1 mark) | | v. | $(ST)^* = T^*S^*$ | (3 marks) | # **QUESTION TWO** #### (20 MARKS) - a. Let H be a Hilbert space and let $T \in B(H)$ be a bounded linear operator on H. Show that the resolvent set $\rho(T)$ for T is an open set in $\mathbb C$ and that the spectrum $\sigma(T)$ for T is a closed set $\mathbb C$. (5 marks) - b. Let (e_n) be an orthonormal basis for the infinite dimensional separable Hilbert space H. Define T, a one sided operator on H with respect to this basis and determine its spectrum. - c. Let T be a compact, self-adjoint linear operator on a finite dimensional Hilbert space H. Show that H admits an orthonormal basis (e_n) consisting of eigenvectors for T. Discuss the finite dimensional and infinite dimensional cases. (Spectral Theorem for Compact Operators) # **OUESTION THREE** # (20 MARKS) - a. Let P be a bounded self-adjoint linear operator on the Hilbert space H and assume that P is idempotent. Show that P is the orthogonal projection into the closed linear subspace $M = \{z \in H \mid Pz + z\}$ (fixed space for P) (10 marks) - b. Let L be a closed subspace of a Hilbert Space H. Show that H can be expressed as a direct sum of L and its complement, $H = L \oplus L^{\perp}$. (10 marks) # **QUESTION FOUR** #### (20 MARKS) a. State and prove the Parallelogram Law. (3 marks) b. Prove that the norm $\|\cdot\|$, on a linear space E induced by an inner product \langle,\rangle in it if and only if the norm satisfies the Parallelogram Law and that in this case the inner product is given by the Polarization Identity. (17 marks) #### **QUESTION FIVE** - a. Show that if a sequence of bounded linear operators (A_n) is a Cauchy sequence at every point of a Banach space, then the sequence $\{\|A_n\|\}$ of these operators is uniformly bounded (Banach-Steinhaus Theorem). - b. Let X and Y be two Banach spaces. Let $\{A_n\}$ be a sequence of bounded linear operators mapping $X \to Y$ such that $\{A_n x\}$ is a bounded subset for each $x \in X$. Show that the sequence $\{\|A_n x\|\}$ of norms of these operators is bounded (Uniform Boundedness Principle). - c. Let $X = \{x = \{x_j\}: \text{ only a finite number of } x \text{ are non} \text{zero} \}$ and $||x|| = \sup_j |x_j|$. Consider the mapping which is a linear functional defined by $f_n(x) = \sum_{j=1}^n x_j$. Determine whether or not the sequence of functionals satisfies the Uniform Boundedness Principle.