

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE

OF MASTER OF SCIENCE (APPLIED MATHEMATICS)

COURSE CODE:

MAT 851

COURSE TITLE:

ORDINARY DIFFERENTIAL EQUATIONS I

DATE:

20th April ,2023

TIME:

2pm -5pm

INSTRUCTIONS TO CANDIDATES

Answer question ONE (COMPULSORY) and any other TWO questions

Time: 3 hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (20mks)

b) Expand f(x) = sinx, $0 < x < \pi$ in a Fourier cosine series. (4mks)

c) Solve
$$y''(t) + y(t) = 1$$
 given $y(0) = 1$, $y'(0) = 0$ by use of Laplace transforms (4mks)

d) Discuss the existence of solutions, stating their nature for the following ODE's

i)
$$y' = 2x \ y(0) = 1$$

ii)
$$xy' = y - 1 \quad y(0) = 1$$

iii)
$$y^{2} + y^{2} + 1 = 0$$
 $y(0) = 1$ (3mks)

e) Show that the origin is locally stable for a mathematical pendulum $\dot{x}_1 = x_2$, $\dot{x}_2 = -\frac{g}{l}\sin x_1$. Use

a Lyapunov function candidate
$$v(x) = (1 - \cos x_1)gl + \frac{l^2x^2}{2}$$
 (3mks)

f) Use elimination method to solve
$$\dot{x} = x + 3y$$
 $\dot{y} = x - y$ (3mks)

QUESTION TWO (20mks)

- a) Find the quadratic Lyapunov function for the system $\dot{x} = Ax = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Is the system stable or asymptotically stable? (4mks)
- b) Find a Fourier series for $f(x) = x^2$, 0 < x < 2, hence evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ (4mks)
- c) Prove that $e^{At}e^{Bt} = e^{(A+B)t}$ $\forall t \text{ iff } BA = AB$ (2mks)
- d) Solve the difference equation $y_{k+1} = 2y_k$; k = 0,1,2...; $y_o = 3$ (3mks)
- e) Let γ^+ be a positive semi orbit in a closed bounded subset K of R^2 and suppose K has only a finite number of critical points, then proof that the following is satisfied (7mks)
- i) $\omega(\gamma^+)$ is a critical point
- ii) $\omega(\gamma^+)$ is a periodic orbit
- iii) $\omega(\gamma^+)$ contains a finite number of critical points and a set of orbits γ_i with $\alpha(\gamma_i)$ and $\omega(\gamma^+)$ consisting of a critical point for each orbit γ_i

QUESTION THREE (20mks)

a) Solve the system of the differential equation
$$\frac{dx}{dt} = x + 3x$$
 (6mks)

b) Show that the lpha- and $\omega-$ limit sets of an orbit $\gamma-$ are closed and invariant. Furthermore, if $\gamma^+(\gamma^-)$ is bounded, then the $\omega-(\alpha-)$ limit set is non empty, compact and connected, $dist(\phi(t,p),\omega(\gamma(p)) \to 0 \text{ as } t \to \infty \text{ and } dist(\phi(t,p),\alpha(\gamma(p)) \to 0 \text{ as } t \to \infty \text{ . (8mks)}$

c) Expand $f(x) = x^2$, $0 < x < 2\pi$ in a Fourier series if the period is 2π (6mks)

OUESTION FOUR (20mks)

Discuss the existence and unique solution for the IVP $y' = \frac{2y}{x} y(x_0) = y_0$ (5mks)

$$\frac{dx}{dt} = -4x + y + z$$

b) Find the general solution to the system $\frac{dx}{dt}=-4x+y+z$ $\frac{dy}{dt}=x+5y-z$ $\frac{dz}{dt}=y-3z$ (6mks)

c) Classify all of the equilibrium points of the nonlinear system $\dot{x} = f(x)$ with

$$f(x) = \begin{bmatrix} x_1^2 - x_2^2 - 1 \\ 2x_2 \end{bmatrix}$$
 (7mks)

(2mks) d) Find $L(te^{3t})$

OUESTION FIVE (20mks)

- a) Prove that the set W is open, g is continuous and increasing on W and the sequence $\{g^{k}(w)\}\ k=0,1,...n\leq\infty$ is monotonic where $g^{k}(w)=g(g^{k-1}(w),\ k=1,2,...g^{0}(w)=w$ (9mks)
- b) Show that if x(t) is an n x n matrix solution of $\dot{x} = A(t)x$, then either $\det x(t) \neq 0$ for all t or (5mks) $\det x(t) = 0$ for t
- (6mks) Discuss the stability of the nonlinear system

$$\dot{x}_1 = -x_1$$
a)
$$\dot{x}_2 = -x_2 + x_1^2$$

$$\dot{x}_3 = x_3 + x_1^2$$

$$\dot{x}_4 = -x_2^3$$

b)
$$\dot{x}_1 = -x_2^3$$

 $\dot{x}_2 = x_1^3$