

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS **2022/2023 ACADEMIC YEAR**

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED **MATHEMATICS**

COURSE CODE: MAT 869

COURSE TITLE: COMPLEX ANALYSIS I

DATE: 18TH APRIL 2023

TIME: 2.00-5.00 PM

INSTRUCTIONS TO CANDIDATES

Attempt ANY THREE questions

QUESTION ONE: (20 MARKS)

- a) Find the residues of $f(z) = \frac{z^2 + 2z}{(z+1)^2(z^2+4)}$ at all its poles and hence evaluate $\iint_c f(z) dz$ (10 Marks)
- b) Using examples distinguish between a pole and a zero of a complex function (5 Marks)
- c) Find the maximum value of $|z^2 + 3z 1|$ in the disk $|z| \le 1$ (5 Marks)

QUESTION TWO: (20 MARKS)

- a) Find the Laurent series expansion for $\frac{1}{z^2 3z + 2}$ in the region 1 < |z| < 2 (7 Marks)
- b) Evaluate $\int_{c}^{\sin \pi z^{2} + \cos \pi z^{2}} dz$ where c is the circle |z| = 3 (5 Marks)
- c) Locate the zeros and singularities of the function $f(z) = \frac{(z^2 4)Cos(\frac{1}{z})}{z^2 + z 6}$ Classify the singularities and determine the behavior of the function at infinity (8 Marks)

QUESTION THREE: (20 MARKS)

- a) State and prove Rouche's theorem (6 Marks)
- b) Determine the number of roots of the polynomial $p(z) = z^4 + 6z 3$ that lie inside the ring $1 \le |z| < 2$ (4 Marks)
- d) State and prove Cauchy's integral theorem (5 Marks)
- e) Evaluate $\int_{c} \frac{dz}{\left(z^2+4\right)^2}$ where C is the circle |z-i|=2, using Cauchy's integral formula for derivatives. (5 Marks)

QUESTION FOUR: (20 MARKS)

- a) Prove that if f(z) is analytic and $f'(z) \neq 0$ in a region R, then the mapping w = f(z) is conformal at all points in R. (5 Marks)
- b) Find the bilinear transformation which maps the point 2, i, -2 onto the points 1, i, -1 (5 Marks)
- c) Find the first four terms of the Taylor series expansion of $f(z) = \frac{1}{(z-1)(z-3)}$ about the point z = 4. Find the region of convergence. (5 Marks)
- d) Find the image of the circle |z-1| = 1 under the mapping $w = \frac{1}{z}$ (5 Marks)

QUESTION FIVE: (20 MARKS)

- a) Define the residue of a function and derive the formula for evaluating the residue at a pole of order m > 1 (5 Marks)
- b) Apply Cauchy's Residue theorem to evaluate

(i)
$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$$
 (5 Marks)

(ii)
$$\int_{C} \frac{4-3z}{z(z-1)(z-2)} dz \text{ where C is the circle } |z| = \frac{3}{2}$$
 (5 Marks)

(iii)
$$\int_{0}^{2\pi} \frac{1}{4\sin\theta + 5} d\theta$$
 (5 Marks)

