

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS
2023/2024 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE

OF

MASTER OF ARTS IN GEOGRAPHY

COURSE CODE: GEO 814

COURSE TITLE: ADVANCED DIGITAL IMAGE PROCESSING

DATE: Wednesday 6th December, 2023

TIME: 2:00-5:00pm

INSTRUCTIONS TO CANDIDATES

Answer ONE and any other THREE Questions

TIME: 3 Hours

MMUST observes ZERO tolerance to examination cheating

Question ONE

In digital images errors occurs at both spatial and spectral levels. With relevant examples describe error types, causes and possible remedies applied for each. (15mks)

Question TWO

You are in a project team tasked to prepare landuse/landcover map of Kakamega forest. The available datasets are:

- i) Landsat5 MSS sensor data acquired during the month of April, 1986, bands are B4, B5, and B6 which measures 185km by 185km in gray scale.
- ii) Rivers and Roads shapefiles covering the whole country from Kenya data shapefile. Explain the step-by-step image preprocessing procedures you will undertake to realize the required map. (15mks)

Question THREE

Using the table below that shows a four band hypothetical image data answer the following questions:

i.	The image data contains errors identify the bands with the errors	(2mks)
	J T WILL WILL WILL WILL WILL WILL WILL	(2111110)

- ii. Explain how that error will be corrected (2mks)
- iii. Explain how the image data will be stored in three formats;
 a) Band sequential format (BSQ) (3mks)
 - b) Band interleaved by line format (BIL) (4mks)
 - c) Band interleaved by pixel format (BIP) (4mks)

Table 1: Hypothetical image data

Band 1			Band 2			Band 3				Band 4					
1	4	5	6	2	5	8	9	105	79	103	114	20	25	31	26
3	4	4	5	10	3	2	1	114	100	124	134	29	19	29	50
2	3	9	10	9	8	7	6	130	125	109	150	25	30	33	50

Question FOUR

Account for image pre-processing techniques that would be performed on a Land sat ETM+ image acquired on 23/4/2006 covering western Kenya to be used together with the following shape files; roads, county boundaries and rivers to produce a land use/cover map of the region.

(15mks)

Question FIVE

Using tables 1 and 2 below that show image data structure for Landsat ETM+ Sensor data and filter kernel, answer the following questions;

8	8	6	6	6
2	8	6	6	6
2	2	8	6	6
2	2	2	8	6
2	2	2	2	8

-1	-1	-1
-1	16	-1
-1	-1	-1

Table2: Image data structure

Table 3: Filter Kernel

- i) Identify the error type in the image structure and filter kernel type. (2mks)
- ii) The filter kernel was applied on the image data structure to enhance land cover boundary edges. Explain the procedure and draw the resultant image structure.

 (10mks)
- iii) Explain the effect of applying the filter kernel on the image structure. (3mks)

Question SIX

(a) Describe the contrast manipulation techniques used in image enhancements.
 (b) Explain any Four environmental applications of digital image processing.
 (8mks)