

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF TECHNOLOGY EDUCATION IN MECHANICAL ENGINEERING

COURSE CODE:

TEM 321

COURSE TITLE:

SOLID MECHANICS II

DATE:

14/12/2023

TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS:

- 1. This paper contains FOUR Questions
- 2. Answer Question ONE and any other TWO Questions
- 3. Marks for each question are indicated in the parenthesis.
- 4. It is in the best interest of the candidate to write legibly
- 5. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (Compulsory)

(30 Marks)

- a) A cantilever beam is carrying a uniformly distributed load of 10 kN/m over the entire span of $5\ m.$
- i) Draw the shear force and bending moment diagram for the beam (6 marks]
- ii) Determine the maximum bending stress in the beam given that the section is 200 mm wide by 300 mm deep [8 marks]
- iii) Determine the slope at the supports and maximum deflection in the beam using Moment area method [8 marks]
- b) A shaft is made from tube. The ratio of the inside diameter to the outside diameter is 0.6. The material must not experience a shear stress greater than 500 kPa. The shaft must transmit 1.5 MW of mechanical power at 1500 rev/min. Calculate the shaft diameters

QUESTION TWO

(20 Marks)

- a) A cylindrical bar of diameter 20 mm and length 6m is axially loaded with a tensile force of 50 kN. Determine the normal and shear stresses acting on an element which makes 30° inclination with the vertical plane [8 marks]
- b) At a point of a material, the 2D stress system is defined by $\sigma_x = 60$ MPa (tensile); $\sigma_y = 45$ MPa (tensile); $\tau_{xy} = 37.5$ MPa Evaluate the values of the principal stresses and their direction. Find the greatest shearing stress

QUESTION THREE

(20 Marks)

- a) A column 400 mm x 400 mm carries a vertical load of 250 kN at a distance of 20 mm from the neutral axis. Determine the maximum and minimum stress developed in the section [6 marks]
- b) A thin cylinder of internal diameter 1.25 m contains a fluid at an internal pressure of 2 N/mm². Determine the maximum thickness of the cylinder if:
 - i) The longitudinal stress is not to exceed 30 N/mm²

[4 marks]

ii) The circumferential stress is not to exceed 45 N/mm²

[4 marks]

c) Outline the similarities and the differences of thin cylinders, thick cylinders and spherical vessels [6 marks]

QUESTION FOUR

(20 Marks)

- a) A member is subjected to the combined action of bending moment 400 Nm and torque 300 Nm. What respectively are the equivalent bending moment and equivalent torque [4 marks]
- b) A thin cylinder of 100 mm internal diameter and 5 mm thickness is subjected to an internal pressure of 10 MPa and a torque of 2000 Nm. Calculate the magnitudes of the principal stresses [10 marks]
- c) Justify the need for theories of failure in materials

[3 marks]

d) Outline the application and limitation of maximum principal stress theory
[3 marks]

----END OF QUESTION PAPER----

TEM 321