

(University of Choice) MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2015/2016 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DIPLOMA IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: DCE 073

COURSE TITLE: THEORY OF STRUCTURES I

DATE: THURSDAY 10TH DECEMBER 2015 TIME: 2.00 - 4.00 PM

INSTRUCTIONS:

- 1. This paper consists of FOUR Questions
- 2. Answer Question One and any other Two Questions
- 3. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

DCE 073: THEORY OF STRUCTURES I

QUESTION 1 [Compulsory)

- a) Define the following terms as used in theory of structures
 - (i) Elasticity
 - (ii) Malleability
 - (iii)Ductility
 - (iv)Plasticity
 - (v) Brittleness (5Marks)
- b) Define factor of safety (2 Marks)
- c) Define the following terms as used in theory of structures
- d) Define factor of safety (2 Marks)
- e) Explain the two distinct uses of factor of safety (4 Marks)
- f) List four types of forces and their respective effects on a structural member (8 Marks)
- g) Define the term beam as applied to civil engineering (2 Marks)
- h) A hollow rectangular beam has 1 cm thick walls, as shown. What is the moment of inertia about the x-x centroidal axis?8mks

- i) Explain the effect of doubling the moment of inertia of a beam. (2 Marks)
- j) Describe the stress strain curve and Draw a stress strain graph of a ductile material (copper) and indicate the following
- i. Limit of proportionality
- ii. Elastic limit
- iii. Yield point
- iv. Breaking point

8 Marks)

QUESTION 2

a) A tensile bar stretches an amount $\delta = \frac{P \cdot L}{A \cdot E}$ where P is the applied load, L is the length of the bar, A is the cross-sectional area, and E is Young's Modulus. The bar has a

circular cross section. Given a load of 30 KN, a length of 80 cm, a diameter of 6 mm, and a Young's Modulus of 207 GPa, calculate:

(i) The deflection in mm.	(6 Marks)
(ii) Stress exerted on the bar	(3 Marks)
(iii)Strain	(3 Marks)
b) State the Hookes law	(2 Marks)

c) List three design codes or standards that have specified factor of safety in relation to structures (6Marks)

QUESTION 3

- a) Briefly explain four circumstances that should be taken into account while determining factor of safety 8 (Marks)
- b) A mass of 1000kgs is exerted on a structural member and the area of contact is 50mm². The structural member stretches with 2mm. If the structural member original

length is 2M ,calculate on the structural member

- i) Stress (3 Marks) ii) Strain (3 Marks)
- iii) Young's modulus

iv) What type of force is being experienced by the structural member? explain (3 Marks)

QUESTION 4

a) Describe three types of beams (3 Marks)

(Marks)

- b) Explain three types of load distribution on a beam (3 marks)
- c) A uniform 8kg metal ba r of equal length to a diving board is placed on top of a diving board of 3m length. Draw the shearing forces and bending moments experienced by the diving board and Calculate
- (i) Bending moment
- (ii) Shear force. (14 marks)