
(University of Choice)

# MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST) 

MAIN CAMPUS

## UNIVERSITY EXAMINATIONS

 2014/2015 ACADEMIC YEAR
## FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE
OF
MASTER OF SCIENCE IN WATER RESOURCES ENGINEERING
COURSE CODE: CWE 802
COURSE TITLE: APPLIED ENGINEERING HYDROLOGY

## DATE: 15TH DECEMBER 2014

INSTRUCTIONS:

1. Answer any THREE questions
2. Each questions carries equal marks
3. Examination duration is $\mathbf{3}$ Hours

MMUST observes ZERO tolerance to examination cheating

## QUESTION ONE

(a) Diferentiate between distribution and probability density function
[4Marks]
(b) Given discharge data of a river for $12 y r s$ as: $80,70,50,195,90,100,88,95,79,99,110,65$. Assuming EVI distribution, and using the probability weighing method estimate:
(i) $\mu$ and $\alpha$
(ii) $\mathrm{X}_{220}$
(iii) Comment on the result on (ii) above

## QUESTION TWO

(a) In time series analysis , distinguish between Forcasting and Prediction
[4 Marks]
(b) A sample time series of mean flows for eight consecutive years in ariver in $\mathrm{m}^{3} / \mathrm{s}$ is given as follows: 75,53,100,170,130,142,95,42. Estimate the first four sample autocorelation coefficient
[16 Marks]
(c) A first order autoregressive model is given by

$$
x_{i}-7.5=0.45\left(x_{i-1}-7.5\right)+a_{i}
$$

Where $\mathrm{a}_{\mathrm{i}}$ is normally distributed white noise having zero mean and variance $\sigma_{a}^{2}=9.5$. Given a starting value $X_{1}=53$, generate the next five values, $X_{2}, X_{3}, X_{4} X_{5}$ and $X_{6}$, assuming the following random $N(0,1)$ values: $0.522,-0.874,1.235,0.095,0.187,-0.654 \ldots . . .$.
[10 Marks]

## QUESTION THREE

(a) Briefly describe precipitation Intensity-duration-frequency relationship
(b) Calculate the potential evapotranspiration from an area in the month of August by Peman's formula. The following data are given

Latitude: $\quad 20^{\circ}$ North
Elevation: $\quad 200 \mathrm{~m}$ above sea level
Mean monthly temperature: $22.5^{\circ} \mathrm{C}$
Mean relative humidity; 65\%
Mean observed sunshine hours: 8h
Wind velocity at 6 m height: $74 \mathrm{~km} / \mathrm{d}$
Mean monthly solar radiation=15.3mm of water/day
Mean monthly possible sunshine houres=12.8hrs
Nature of surface cover: close crops- ground green, i.e reflection coefficient of 0.2
The Stefan- Boltzman constant, $\sigma=2.01 \times 10^{-9} \mathrm{~mm} /$ day
Psychometric constant $\alpha=0.49 \mathrm{mmHg} /{ }^{\circ} \mathrm{C}$
$\mathrm{H}=$ heat budget

$$
=\mathrm{H}_{\mathrm{a}}(1-\mathrm{r})(0.29 \cos \phi+0.55 \mathrm{n} / \mathrm{N})-\sigma \mathrm{T}_{\mathrm{a}}^{4}\left(0.56-0.092 \sqrt{\mathrm{e}_{\mathrm{a}}}\right)(0.10+0.9 \mathrm{n} / \mathrm{N})
$$

[10Marks]
(c) On a catchment of $40 \mathrm{~km}^{2}$, after a 4 hour storm, the time and discharge of a river is given below. Determine as accurately as possible the peak flow and the time of occurrence in a flood exerted by
a 6 hr storm which produces 1.55 cm runoff during the first 4 hrs and 2.5 cm of runoff during the second 2 hrs from the unit hydrograph of the 4 hour storm in catchment of area $40 \mathrm{~km}^{2}$ above.
[10marks]

| Time | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Discharge $\mathrm{m}^{3} / \mathrm{sec}$ | 3 | 3 | 6 | 13 | 17 | 20 | 19 | 15 | 10 | 7 | 5 |

## QUESTION FOUR

(a) Using Muskingum method for flood routing, determine the following hydrograph through the river reach for which the Muskingum constants, K and $x$ are estimated to be 12 h and
0.2 respectively. Assume the Initial outflow is $15 \mathrm{~m}^{3} / \mathrm{s}$.
[15 Marks]

| Time(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Inflow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ | 15 | 22 | 43 | 65 | 84 | 98 | 105 | 100 | 79 | 75.5 | 60 | 54 | 45 |

(b) Briefly discuss the operations and Management principles of reservoirs

## SATURATION VAPOUR PRESSURE OF WATER

| Temperature ( ${ }^{\circ} \mathrm{C}$ ) | Saturation Vapour pressure $\mathbf{e s}_{s}$ |  | A (mm/ $\left.{ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: |
|  | ( mm of Hg ) | milibar |  |
| 0 | 4.58 | 6.11 | 0.30 |
| 5.0 | 6.54 | 8.72 | 0.45 |
| 7.5 | 7.78 | 10.37 | 0.54 |
| 10.0 | 9.21 | 12.28 | 0.60 |
| 12.5 | 10.87 | 14.49 | 0.71 |
| 15.0 | 12.79 | 17.05 | 0.80 |
| 17.5 | 15.00 | 20.00 | 0.95 |
| 20.0 | 17.54 | 23.38 | 1.05 |
| 22.5 | 20.44 | 27.95 | 1.24 |
| 25.0 | 23.76 | 31.67 | 1.40 |
| 27.5 | 27.54 | 36.71 | 1.61 |
| 30.0 | 31.82 | 42.42 | 1.85 |
| 32.5 | 36.68 | 48.89 | 2.07 |
| 35.0 | 42.81 | 57.07 | 2.35 |
| 37.5 | 48.36 | 64.46 | 2.62 |
| 40.0 | 55.32 | 73.14 | 2.95 |
| 45.0 | 71.20 | 94.91 | 3.66 |

