

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

(MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

2021/2022ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN GENERAL AGRICULTURE

COURSE CODE: DAG 051

COURSE TITLE: INTRODUCTION TO AGRICULTURAL MATHEMATICS

DATE:

18/1/22

TIME: 12-2PM

INSTRUCTIONS TO CANDIDATES

Answer questions in Section A and any TWO Questions in Section B.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

SECTION A: Answer all questions (30 Marks)

QUESTION ONE

- a) i) Apart from substitution and elimination method name three other methods used to solve simultaneous equations (3mks)
 - ii) Solve the system of the equations (3mks)

$$2x + 3y = 4$$

$$4x + 6y = 7$$

- b) Integrate $2x + 3x^2 + 80x^5$ (3mks)
- c) Find the minimum and maximum points of the $f(x) = x^3 3x^2 + 4x 10$ (5mks)
- d) Find the number of terms in the geometric progression 6, 12, 24, ..., 1536 (5mks)
- e) Find the third derivative of $f(x) = 2x + 3x^2 + 9x^3$ (3mks)
- f) Prove that $|A \cup B| = |A| + |B| |A \cap B|$ (5mks)
- g) If f(x) = 0 find x given that $f(x) = x^3 + x^2 20x$ (3mks)

SECTION B: Answer any two questions (40 marks)

OUESTION TWO

- a) i) Prove that the quadratic formula is given by $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ (5mks)
 - ii) Solve $27x^2 + 40x 200$ using quadratic formula

1;

(5mks)

b) Given that set $A = \{1,2,3,4,5\}, B = \{4,5,6,7,8\}$ and $C = \{2,4,6,8,10\}$ find; i. $A \cap B'$

i. $A \cap B'$ (2mks) ii. $A \cup C$

iii. $A \cap B \cap C$ (2mks)

iv. $A' \cap B'$ (2mks)

v. Draw the Venn diagram to represent the three Sets (2mks)

QUESTION THREE

a) A farmer has realized that his annual profit in maize production is given by the following

$$P = 15x^2 - 5y^2 - 80x - 30y + 20xy + 20$$

Where x = is the yield

y = is the selling cost (In hundred thousands)

Determine the maximum value of x and y that will maximize the profit (7mks)

- b) Prove that $tan \theta + Cot\theta = Sec\theta Csc\theta$ (5mks)
- c) Solve the following;

i.
$$\int_{1}^{4} 2x^3 + 5x^4 + x^6 dx$$
 (3mks)

ii.
$$\int 4x^3 + 3x^2 + 2x \, dx$$
 (3mks)

iii.
$$\frac{d}{dx}(x^3 + 3x^2 + 3x + 60)$$
 (2mks)