

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN PHYSICS AND BACHELOR OF **EDUCATION SCIENCE**

COURSE CODE:

SPH 415

COURSE TITLE:

THERMODYNAMICS

DATE: TUESDAY 19TH APRIL, 2022 TIME: 12:00 PM - 2:00 PM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any TWO of the remaining Symbols used bear the usual meaning.

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

USEFUL CONSTANTS

Gas constant

 $R = 8.313 Jmol^{-1}K^{-1} = 8.3 \times 10^7 ergs/K$

Boltzmann constant

 $\kappa = 1.38 \times 10^{-38} JK^{-1}$

Planck constant

 $h = 6.63 \times 10^{-34} Js$

 $\mu_R = 9.27 \times 10^{-24} J/T$

 $1J = 1.0 \times 10^7 erg$

1 calorie = 4.18 joules

 $\gamma = 1.4$ for diatomic gas

One atmosphere (1 atm) = $1.013 \times 10^5 \text{ N/m}^2$

Latent heat of fusion of water = $3.34 \times 10^5 \text{ J kg}^{-1}$

Latent heat of vaporization of water = $2.256 \times 10^6 \text{ J kg}^{-1}$

Latent heat of fusion of ice = 80 cal/g

Specific heat capacity of water = 4190 J (kg °C)⁻¹

QUESTION ONE (30 MARKS)

- a. Define the following terms:
 - i. Process (1 mark)
 - ii. Isolated system (1 mark)
 - iii. Reversible process (1 mark)
 - iv. Thermodynamic equilibrium (1 mark)
- b. State the first law of thermodynamics for a cyclic process (2 marks)
- c. Using the zeroth law of thermodynamics, explain how a glass tube thermometer works.

(3 marks)

d. Show that for a reversible work done isothermally the total work can be expressed as

$$W = RT \ln \frac{v_2}{v_1}$$

(3 marks)

- e. A fluid of volume 0.05 m³ is contained behind a piston at a pressure of 1.0 x 10⁶N/m². After a reversible expansion of constant pressure, the final volume is 0.2m³. Calculate the work done by the fluid.

 (3 marks)
- f. Express the first law of thermodynamics in terms of specific heat capacity at constant volume.

(2 marks)

g. With the aid of a diagram, show that the thermal efficiency of a heat engine is given by $\eta =$

$$1 - \frac{Q_2}{Q_1} \tag{4 marks}$$

h. An Engine absorbs heat at 227°C and rejects at 27°C. Determine its efficiency. (2 marks)

- i. 1 gm of 0₂ is compressed adiabatically at Normal Temperature and Pressure (N.T.P) to half its volume. What is the work done against the substance? Take γ for O₂ = 1.33. (3 marks)
- j. One mole of gas at 127 ° C expands isothermally till its volume is doubled. Find the work done and heat absorbed. (4 marks)

QUESTION TWO (20 MARKS)

- a. Show that the equation for a reversible adiabatic change is given by $PV^{\gamma} = constant$ (Poisson's law) where $\gamma = \frac{c_p}{c_n}$ is an ideal gas constant. (10 marks)
- b. A refrigerator is working between 200 K and 300 K at 60% efficiency regarding the use of power (ε ≠ β). The power supply used to run the refrigerator is 400 V and the current through the refrigerator is 0.25 A. Calculate the number of KWH spend to run the refrigerator for one full day.
- c. At Atmospheric pressure 1.00 g of water, having a volume of 1.00 cm³, becomes 1671 cm³ of steam when boiled. The heat of vaporization of water is 539 cal/g at atmospheric pressure. Calculate the work done by the system in such an expansion and the increase in internal energy of the system. (5 marks)

QUESTION THREE (20 MARKS)

- a.
 - i. Define C_p and C_y

(2 marks)

- ii. Derive the Mayer's relation from any two state variables such as U = f(V, T) (10 marks)
- b. A reversible engine works between two temperatures whose difference is 100°C. If it absorbs 746 Joule of heat from the source and give 546 to the sink, calculate the temperatures of source and sink.

 (4 marks)
- c. A Carnots Engine take 1000 k calories of heat from a source at 627°C and rejects to the sink some heat at 27°C. Express the mechanical work done by the engine in kilowatt hours and also in electron volts given that $1eV=1.6 \times 10^{-19} \text{ J}$. (4 marks)

QUESTION FOUR (20 MARKS)

- a. Ten grams of water at 20°C are converted into ice at 0°C at constant atmospheric pressure.

 Calculate the entropy change. (7 marks)
- b. Derive two Maxwell's thermodynamic relations from the thermodynamic potentials.

(6 marks)

c. Using Maxwell's relations, show that pv = RT

(7 marks)

QUESTION FIVE (20 MARKS)

a. Show that the coefficient of performance of a refrigerator is given by: (5 marks)

$$\beta = \frac{1 - \varepsilon}{\varepsilon}$$

b. With the aid of diagram, explain the processes that take place in a Four-Stroke Otto-cycle and show that its efficiency is given by $\therefore \eta = 1 - \left(\frac{v_2}{v_1}\right)^{\gamma-1} = 1 - \frac{1}{r_c^{\gamma-1}}$ where r_c is the compression ratio. (15 marks)