



# MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

**UNIVERSITY EXAMINATIONS** 

**2021/2022 ACADEMIC YEAR** 

FIRST YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF

**BACHELOR OF TECHNOLOGY EDUCATION** 

COURSE CODE:

**TEC 102** 

**COURSE TITLE:** 

**TECHNICAL DRAWING I** 

**DATE: 28<sup>TH</sup> APRIL 2022** 

TIME:8.00-10.00 A.M.

## INSTRUCTIONS

• Attempt questions 1, 2 and any other one questions.

• All dimensions are in mm unless otherwise stated.

Time: 3 hours.

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over

# **QUESTION ONE**

Pictorial drawing of a machine part is shown in figure Q1. Study the part and draw, full size and in first angle orthographic projection the following views:-

- i) Sectional Front on the cutting plane A-A
- ii) End elevation viewed from the left hand side of i) above
- iii) Plan
- Insert six leading dimensions.

(40 marks)



# **QUESTION TWO**

a) Drawing of a machine spare part is given in fig. Q2. To a scale of 1:1 construct the part showing all the construction details. (14 marks)



b) A triangle has a base angle of 37.5°, base 35mm and perimeter of 120mm. Construct the triangle and hence similar triangle whose perimeter is 150mm. (6 marks)

# **QUESTION THREE**

- a) Construct a diagonal scale to show kilometers, hectometers and decameters when 2.5 centimeters are equal to 1 kilometer and long enough to measure 6 kilometers. On the scale show a distance of 4.54kilometers and 5.86 kilometers. (10 marks)
- b) Figure Q3(b) shows template to be produced in the workshop. To a scale of 2:1 redraw the template and dimension it fully. (7marks)



LENGTH : 80
WIDTH : 40
BOREHOLES : 4 x Ø6
ROUNDINGS : R5

OBLONG HOLE WIDTH : 7,40 LENGTH

Fig Q3(b)

- c) With aid of sketches show what is meant by
  - (i) half section
  - (ii) 30 CRS
  - (iii) Scrap section

(3 marks)

# **QUESTION FOUR**

- (a) Figure Q4shows shaped block in pictorial projection. Study the blocks, using freehand and in good proportions sketch the block in their respective orthographic projection angles the following views:-
- Front elevation in direction F (i)
- End elevation in direction E (ii)
- Plan (iii)
- include all the hidden details

(18 marks)



Fig Q 4.

- (b) Give the symbol for the following:-
  - (i) Third angle projection
  - (ii) Threaded shaft.

(2 marks)





(University of Choice)

# MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

# UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

# THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

# FOR THE DEGREE OF B.SC MECHANICAL AND INDUSTRIAL ENGINEERING

**COURSE CODE:** 

**MIE 372** 

**COURSE TITLE:** 

THERMODYNAMICS III

**DURATION: 2 HOURS** 

DATE: 28-4-2022

TIME: 15.00-17.00 HRS

# INSTRUCTIONS TO CANDIDATES

(i) Answer Question 1 (Compulsory) and any other TWO questions

(ii) All symbols have their usual meaning

(iii) Use steam tables provided

This paper consists of 3 printed pages. Please Turn Over



MMUST observes ZERO tolerance to examination cheating

# QUESTION ONE (Compulsory) - 30 MARKS

| a)  | What is the implication of the Grashof number with regard to fluid flow? |                                                                                        | // <b>3</b> 5 - 3 - 3 |
|-----|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------|
| b)  | Differ                                                                   | rentiate between the following bodies.  Black body                                     | (4 Marks)             |
|     | (ii)                                                                     | Grey body                                                                              | (2 Marks)             |
| c)  | Use a                                                                    | sketch to show the progression in the velocity boundary layer as the fluid             |                       |
| (d) | Explain                                                                  | n briefly the differences between the following types of heat exchangers  Recuperative | (5 Marks)             |
|     | (ii)                                                                     | Regenerative                                                                           | (2 Marks)             |
|     | Draw a                                                                   | well labeled diagram to show the temperature distribution in a parallel-figer          | (2 Marks)<br>low heat |
|     |                                                                          | the following.                                                                         | (5 Marks)             |
|     | i)                                                                       | Heat exchanger effectiveness                                                           | (2.34. 1.)            |
|     | ii)                                                                      | Thermal capacity                                                                       | (2 Marks)             |
| (g) | Define                                                                   | the Stefan-Boltzmann law                                                               | (2 Marks)             |

# **QUESTION TWO - 20 MARKS**

A single pass shell and tube counter-flow heat exchanger uses waste gas on the shell side to heat a liquid in the tubes. The waste gas enters at a temperature of 400°C with a mass flow rate of 40kg/s. The water enters at a temperature of 100°C with a mass flow rate of 3kg/s.

Assuming that the velocity is not to exceed 1m/s, use the data provided below to calculate:

a) The required number of tubes

(6 Marks)

(4 Marks)

b) The effectiveness of the heat exchanger

(14 Marks)

## DATA

- Tube inside diameter = 10mm
- Tube outside diameter = 12.5mm
- Tube length = 4m
- Specific heat capacity of waste gas = 1.04kJ/kgK
- Specific heat capacity of liquid = 1.5kJ/kgK
- Density of liquid =  $500 \text{kg/m}^3$
- Coefficient of heat transfer of the shell side =  $0.26 \text{kW/m}^2 \text{K}$
- Coefficient of heat transfer of the tube side =  $0.58 \text{kW/m}^2 \text{K}$

# QUESTION THREE - 20 MARKS

Calculate the rate of heat loss in air by natural convection per unit length from a horizontal pipe of 250mm diameter, the surface of which is at 239°C, and the room temperature is 15°C. For the horizontal pipe take:

$$Nu = 0.53[(Pr), (Gr)]^{0.25}$$

and evaluate the properties at mean film temperature. Also take the coefficient of cubical expansion  $\beta$  to be T<sup>-1</sup>; where T is the absolute temperature in Kelvin.

(20 Marks)

# **QUESTION FOUR – 20 MARKS**

An exhaust pipe of 75mm outside diameter is cooled by surrounding it by an annular space containing water. The exhaust gas enters the exhaust pipe at 350°C, and the water enters from the mains at 10°C. The heat transfer coefficients of the gases and water may be taken to be 0.3 and 1.5 kW/m<sup>2</sup>K, respectively, and the pipe thickness is negligible. The gases are required to be cooled to 100°C and the mean specific heat at constant pressure is 1.13 kJ/kgK. The gas flow is 200 kg/h and the water flow is 1400 kg/h. The specific heat capacity of water is 4.19 kJ/kgK.

Calculate the required length of pipe for:

a) a parallel-flow heat exchanger

(16 Marks)

b) a counter- flow heat exchanger

(4 Marks)

