

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

COURSE CODE:

CSE 821

COURSE TITLE:

ADVANCE MECHANICS OF MATERIALS II

DATE: WEDNESDAY 27TH APRIL 2022 TIME: 8.00 - 11.00 AM

INSTRUCTIONS:

- 1. This paper contains THREE questions
- 2. Answer ALL questions
- 3. Marks for each question are indicated in the parenthesis.
- 4. No unauthorized materials are allowed in the examination room
- 5. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

CSE 821 Advanced Mechanics of Materials II

Q.1

- a) An isotropic material is subjected to normal stresses in three perpendicular directions σ_x , σ_y and σ_z , of a multiaxial stress cube. Write the expression equations the resultant normal strains in the directions, x, y and z will be given by: (6 marks)
- b) Aluminium has a yield stress σ_{yield} 40 ksi in tension, a yield strain ε_{yield} 0.004, an ultimate stress $\sigma_{ult} = 45$ ksi, and the corresponding ultimate strain ε_{ult} 0.17. Determine the material constants and plot the corresponding stress-strain curves for the following models:
 - (a) the elastic-perfectly plastic model.
 - (b) the linear strain-hardening model.
 - (c) the nonlinear power-law model.

PLAN

We have coordinates of three points on the curve: $P_0(\sigma_0 = 0.00, \varepsilon_0 = 0.000)$, $P_1 = (\sigma_1 = 40.0, \varepsilon_1 = 0.004)$ and $P_2(\sigma_2 = 45.0, \varepsilon_2 = 0.017)$. Using these data we can find the various constants in the material models. (14 marks)

Q. 2

- a) List five basic hypothesis concepts in the theory of plasticity. (5 marks)
- b) A region on the surface of a 6061-T4 aluminum alloy component has strain gage attached, which indicate the following stresses:

 $\sigma_{11} = 70 \text{ MPa}$ $\sigma_{22} = 120 \text{ MPa}$ $\sigma_{12} = 60 \text{ MPa}$

Determine the yielding for both Tresca's and von Mises' criteria, given that $\sigma_0 = 140$ MPa (the yield stress) and interpret the results (15 marks)

Q.3

(a) Describe stress cycle of Drucker's Postulate.

(7 marks)

- (b) Explain with illustration the following plastic deformation that relates to yield surface changes: (8 marks)
 - 1) Isotropic Hardening
 - 2) Kinetic Hardening
 - c) A rod, 50 mm long, is extended to 60 mm and then compressed back to 50 mm. Determine the total deformation and incremental that has occurred. (5 marks)