

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

(MAIN EXAMINATION)

FOURTH YEAR SECOND SEMESTER EXAMINATION

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN (MATHEMATICS) (SMT & SME)
AND BACHELOR OF SCIENCE IN EDUCATION (ETS, EDA & EDS)

COURSE CODE:

MAT 422

COURSE TITLE:

PARTIAL DIFFERENTIAL EQUATION II (PDE II)

DATE: 27th April, 2022

TIME: 8: 00 - 10: 00 AM

INSTRUCTIONS TO CANDIDATES:

- Answer Question ONE (COMPULSORY) and ANY OTHER TWO questions.
- Do not write on the question paper.

Time: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This paper consists of 4 printed pages. Please turn over.

QUESTION ONE (COMPULSORY)

[30 MARKS]

(a) What is a partial differential equation?

[1 mark]

(b) Classify the following PDE as Parabolic, Hyperbolic, or Elliptic

(i)
$$u_{xx} + x^2 u_{yy} = 0$$

[2 marks]

(ii)
$$u_{xx} - 5u_{xy} + 4u_{yy} + u_x + u_y + 5u = 2$$

[2 marks]

(c) Determine the type of equation and transform it into its canonical form

[5 marks]

$$u_{xx} - x^2 u_{yy} = 0$$

(d) Solve the Initial value problem using the d'Alemberts formula,

[5 marks]

$$u_{tt} - 5^2 u_{xx} = 0 \qquad -\infty < x < \infty$$

$$u(x,0) = x^2, \qquad u_t(x,0) = \cos x$$

(e) Solve the partial differential equation using the method of characteristics

[5 marks]

$$u_y - xu_x = 1 - u \qquad u(x,0) = \cos x$$

(f) Write down an explicit formula for the function u that solves the transport equation [5 marks]

 $u_t + b.u_x = ku$ in $\mathbb{R}^n \times [0, \infty)$

$$u = g$$
 on $\mathbb{R}^n \times (t = 0)$

(g) Solve wave equation by methods of separation of variables

[5 marks]

$$\frac{\partial^2 u}{\partial t^2} = k^2 \frac{\partial^2 u}{\partial x^2} \qquad t \ge 0$$

$$u(0,t) = 0,$$
 $u(l,t) = 0,$ $0 < x < l$

QUESTION TWO

[20 MARKS]

- (a) Using the change of variable $\xi = x + t$ and $\eta = x t$. Show that $u_{xx} u_{tt} = 0$ if and only if $u_{\xi\eta} = 0$ [4 marks]
- (b) An insulated rod of length 10cm has its ends A and B maintained at 20^{0} and 70^{0} respectively until steady state conditions prevail. The temperature at the ends are changed to 30^{0} and 50^{0} respectively. Find the temperature distribution in the rod at time t [6 marks]
- (c) Determine the regions in the xy-plane where the following equation is hyperbolic, parabolic, or elliptic [4 marks]

$$u_{xx} + yu_{yy} + \frac{1}{2}u_y = 0$$

(d) The temperature T(x,t) in a stationary medium, $x \ge 0$, is governed by the heat conduction equation [6 marks]

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2}$$

Making the change of variable $(x,t) \to (u,t)$, where $u = \frac{x}{2\sqrt{t}}$ show that

$$4t\frac{\partial T}{\partial \tau} = \frac{\partial^2 T}{\partial u^2} + 2u\frac{\partial T}{\partial u}$$

QUESTION THREE

[20 MARKS]

(a) Find the Greens function for the Dirichlet boundary value problem (BVP) [5 marks]

$$\nabla^2 u = u_{xx} + u_{yy} = F \quad for \quad x > 0, y > 0$$

(b) Solve the cauchy problem by method of characteristics [5 marks]

$$u_y + uu_x = 0, u(x,0) = x$$

(c) Find the eigenvalues and eigenfunctions of the Laplacian [5 marks]

$$u_{xx} + u_{yy} + \lambda u$$
 in Ω
$$u(0,y) = 0 = u(a,y)$$
 $0 \le y \le b$
$$u(x,0) = 0 = u(x,b)$$
 $0 \le x \le a$

(d) Find the Fundamental solution of the Laplace equation $u_{xx} + u_{yy} = 0$ [5 marks]

QUESTION FOUR

[20 MARKS]

(a) State the maximum principle for the laplace's equation [2 marks]

(b) Solve the non-homogeneous wave equation [7 marks]

$$u_{tt} - u_{xx} = xsint$$
 $t > 0, -\infty < x < \infty$
 $u(x,0) = cosx,$ $u_t(x,0) = x^2$

(c) Reduce to canonical form [6 marks]

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} = 0$$

(d) Suppose that the subharmonic function u satisfies

$$\nabla^2 u = F$$
 in Ω , with $F > 0$ in Ω .

Prove that u(x, y) attains its maximum on $\partial\Omega$. [5 marks]

QUESTION FIVE

[20 MARKS]

- (a) Suppose that $\frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial x^2} < 0$ in V and $u(x,0) \leq M$. Then $u(x,t) \leq M$ in V_T
- (b) Verify that $u(x,y) = ln(\sqrt{x^2 + y^2})$ satisfies the equation $u_{xx} + u_{yy} = 0$ for all $(x,y) \neq (0,0)$ [5 marks]
- (c) Solve the given PDE

$$u_t = 2^2 u_{xx}$$
 $0 < x < 2,$
 $u(0,t) = 3$ $u(2,t) = 4$
 $u(x,0) = 3,$ $t > 0$

(d) Using the Green's formula show that the first fundamental formula for heat equation is given by [5 marks]

$$\int_{\partial R} uv \, dx + (v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x}) dt = 0$$