

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF MASTER OF SCIENCE IN WATER RESOURCES **ENGINEERING**

COURSE CODE:

CWE 812

COURSE TITLE:

WATER AND WASTEWATER

TREATMENT

DATE: THURSDAY 28TH APRIL 2022

TIME: 8.00 - 11.00 AM

INSTRUCTIONS:

- 1. This paper contains FIVE Questions
- 2. Answer questions any FOUR (4) questions.
- 3. Answer each question on a separate page.
- 4. This is an Open Book Exam
- 5. Mobile phones and Tablets are prohibited in Examination room
- 6. Examination duration is 3 Hours

MMUST observes ZERO tolerance to examination cheating This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE

[25 Marks]

You are required to design a circular sedimentation tank to achieve a 60% reduction in TSS with a daily peak flow factor of 2.5. Also determine the BOD removal rate.

Design information

Service area = 2500 ha.

Residential area = 60% of the total area

Commercial area = 30% of total area

Industrial area = 10% of the total area

Residential area composition = 40% are large lots, 55% are small single-family lots 5% multistory apartments. and

The wastewater from the residential area is estimated to be 800 Lpcd.

The sewage from commercial area = 25,000 L/ha/d

Sewage from industrial area = 40,000 L/ha/d, respectively.

Towns of Area	Density (persons/ha)	
Type of Area Large lots Small lots, single family Small lots, two family Multistory apartments	5-7	
	75	
	125	
	2500	

QUESTION TWO

[25 Marks]

- a) A wastewater treatment plant serves a population equivalent of 30 000, a per capita flow rate of 230 l/day and influent TSS concentration of 350 mg/l and has a TSS removal efficiency of 60%. Calculate the flow to the plant, and the quantity and volume of sludge produced each day
- b) Wastewater can be used in the production of biogas. You have designed Up-flow Anaerobic Sludge Blanket (UASB) reactor for biogas production. Discuss the need for reactor optimization and describe the parameters which can be optimized [15 marks]

QUESTION THREE

[25 Marks]

a) Calculate the aeration basin volume (V), the HRT (φ), the volume of sludge wasted each day ($Q_{\rm \ w}$), the mass of sludge wasted each day ($Q_{\rm \ w}\,X_{\rm \ w}$), the fraction of sludge recycled $Q_{\rm r}/Q_{\rm 0}$ and the f/m ratio for a completely mixed activated sludge system.

Design information

Population equivalent served = 60,000

Per capita water use = 225 l/day

Influent BOD (S_0) = 280 mg/l

Required effluent BOD = 20 mg l/l

Yield coefficient (Y) = 0.6

Decay rate $(k_d) = 0.06/\text{day}$

Assumed optimum operational factors are

- 1) aeration tank MLSS (X) = 3500 mg 1/1
- 2) WAS MLSS $(X_w) = 14\,000 \text{ mg l/l}$
- 3) MCRT (φ_{c}) = 10/day

Note: Express values in m³, kg and per day

b) Describe the key treatment mechanisms in a facultative pond and design a facultative pond for an influent wastewater BOD of 550 mg/l and a flow rate of 120 m [10 marks] 3 / day where the average temperature is 20 ° C.

QUESTION FOUR

[25 Marks]

a) Activated Rice husk Ash (RHA) was tested for its ability to remove pesticide organic compounds (POC) from water. Different masses of RHA were added to 1 litre of water (initial POC concentration = 0.9 mg/l) and contacted for 2 hours at 20°C and pH of 7.5. Using the data given in the table below determine whether the adsorption data fits Langmuir or Freundlich isotherm and determine the isotherm constants

[15 marks]

	Concentration of POC (mg/l)
Mass of RHA added (g)	
0.2	0.77
0.5	0.65
	0.32
2.0	0.19
5.0	
10	0.14
20	0.09
	0.06
50	

b) Describe optimization parameters in adsorption water treatment units [10 marks]

QUESTION FIVE

[25 Marks]

- a) The ABC well water has bicarbonate hardness equal to 100 mg/L as CaCO₃. Calculate amounts of lime and soda ash required during the lime-soda ash process [10 marks] (Given: Daily flow rate: 10,000 m³/day
- b) The adoption of membrane processes in developing countries is low. Discuss [15 marks]

