

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATION ENGINEERING

COURSE CODE: ECE411

COURSE TITLE: CONTROL SYSTEMS II

DATE: Thursday, APRIL 21ST, 2022

TIME: 8:00 - 10:00 AM

INSTRUCTIONS TO CANDIDATES

- This Paper Consists of FIVE Questions.
- Attempt Question ONE and TWO other Questions (Do not attempt more than expected).
- Allow ONE hour for Question ONE and another ONE hour for TWO other Questions.
- Question ONE carries 30 MARKS and all other Questions carry 20 MARKS each.
- A BONUS will be awarded for clean and well-organized work.
- Candidates are reminded to STRICTLY adhere to the Examination Rules and Regulations.
- REQUIRED: Answer Booklet and Calculator.

QUESTION ONE (COMPULSORY) (30 MARKS)

- 1. Discuss the effects of following controllers to a system
 - i. Proportional controller
 - ii. Integral controller
 - iii. Proportional and Integral (PI) controller [6

 Marks]
- 2. A PID controller is inserted in series with a system having a transfer function

$$G(s) = \frac{10}{(s+1)(s+2)}$$

The system has unity feedback. Find the gain constants of the PID controller required to locate the closed-loop poles at s=-50, $s=-4\pm j5$. [4 Marks]

3. Highlight 4 reasons why compensation network is needed in control systems

[4 Marks]

- 4. With reference to control systems, what do you understand by the following terms.
 - i. Compensator
 - ii. State variables
 - iii. State-space

[6 Marks]

- 5. Highlight at least 2 reasons why derivative control action is not used by itself in control systems. [2 Marks]
- 6. Compute the transfer function of the system defined by the following state space equations.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -7 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

[2 Marks]

- 7. With a relevant closed loop system drawing and equations, show that a PD control does not improve the steady-state performance of a system. [4 Marks]
- 8. State at least 2 conditions under which a system is not controllable. [2 Marks]

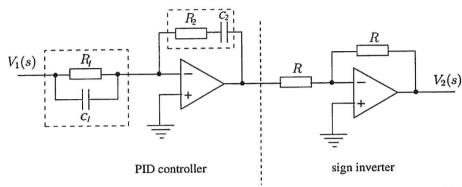
QUESTION TWO (20 MARKS)

1. Discuss any 3 types of compensator configurations using appropriate diagrams.

[6 Marks]

2. Given a system:

$$G(s) = \frac{10}{s(s+1)}$$


Design a phase lead controller such that for the closed-loop system, the dominant pole pair has an undamped natural frequency $\omega_n=4$ and the damping factor $\zeta=0.5$. Draw the Root locus of the compensated system.

Marks]

 Compare and contrast the effects of lead and lag compensating networks in a control system.

Marks]

4. Below is an electronic PID controller based on an op-amp circuit. Determine its transfer function and find K_P , K_I , and K_D .

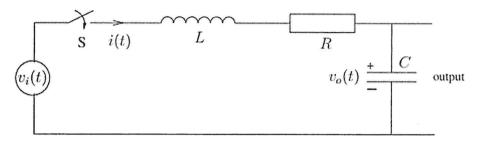
[4 Marks]

QUESTION THREE (20 MARKS)

- Discuss at least 2 properties of state space models.
 Explain an integrator windup and discuss three methods of integrator anti-windup with appropriate diagrams.
 [6 Marks]
- 2. Consider a system described by the transfer function

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_2 s^2 + b_1 s + b_0}{s^2 + a_1 s + a_0}$$

If the system is Linear-Time-Invariant such that $\dot{x} = Ax + Bu$ and y = Cx + Du. Proof that for a dual system, the control canonical form and observer canonical form state-space representations are related by

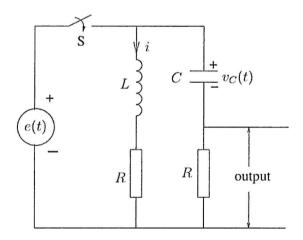

$$\dot{z} = A^T z + C^T v$$

$$w = B^T z + D v$$

[10 Marks]

QUESTION FOUR (20 MARKS)

- Highlight two techniques for tuning PID controllers. [4
 Marks]
- 2. Consider the circuit given below, assuming that the switch S is closed at time t=0. Taking the inductor current as the state $x_1(t)$, the capacitor voltage as state $x_2(t)$, $v_i(t)=u(t)$ and output voltage $v_0(t)=y(t)$.


- i. Obtain the state-space representation of the circuit below [6 Marks]
- ii. Given that R = 1.5, L = 0.5H, C = 1F, u(t) is a unit step voltage starting at t = 0, and assuming zero initial conditions, determine the expressions for $x_1(t)$, $x_2(t)$ and y(t) for $t \ge 0$. [10 Marks]

QUESTION FIVE (20 MARKS)

1. What do you understand by the terms controllability and observability as applied to control systems? [4

Marks]

2. Consider the circuit shown below. Assuming that the switch S is closed at time t=0. Taking the inductor current as the state $x_1(t)$, the capacitor voltage as state $x_2(t)$, e(t)=u(t) and output voltage is y(t). Use Kalman's test to determine whether the system is observable.

[10 Marks]

1. Given a system described by the state equation $\dot{x} = Ax + Bu$, where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -30 & -31 & -10 \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ using the control law u = -Kx. Determine the feedback gains if the desired location of the closed-loop poles is at s = -4 and $s = -6 \pm 5$

[6