

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MECHANICAL AND INDUSTRIAL ENGINEERING

COURSE CODE: ECE 363

COURSE TITLE: BASIC ELECTRONICS

DATE: THURSDAY, APRIL, 21ST, 2022.

TIME: 12:00 - 2:00 PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 printed Pages. Please Turn Over.

Question One (30 Marks)

- (a) With the aid of diagrams, briefly explain the reverse-bias operation of a diode [3 marks]
- (b) (i) Name two types of junction field effect transistors and draw their symbols. [2 marks]
 - (ii) State the junction field effect transistor that has a greater channel conductivity and explain why. [2 marks]
- (c) State and explain the three regions of operation of a bipolar junction transistor. [3 marks]
- (d) The circuit diagram of a bipolar junction transistor, which is made of silicon, is shown below. Given that $V_{BB} = 5.7 V$, $R_B = 50k\Omega$, $V_{CC} = 10V$, $R_C = 970 \Omega$ and $\beta = 100$,

Find the collector emitter voltage, V_{CE} .

[4 marks]

- (e) Draw the circuit diagram of a common-emitter NPN transistor and write the equation for emitter current.[3 marks]
- (f) A D-MOSFET has a shorted-gate drain current, I_{DSS} of 10 mA and the gate-source cut off voltage, $V_{GS(off)}$ is -8V. Using the information given:
 - (i) state whether this is an n-channel or p-channel and explain why.
 - (ii) calculate I_D at $V_{GS} = -3 V$
 - (ii) calculate I_D at $V_{GS} = +3 V$.

[4

marks]

(g) (i) Sketch the circuit diagram of a full-wave bridge rectifier with smoothing capacitor.

[4 marks]

- (ii) Indicate the direction of current flow for one-half cycle around the circuit. [1 mark]
- (iii) State the function of the smoothing capacitor.

[1 mark]

(iv) Draw the output waveforms of a full-bridge rectifier with a smoothing capacitor and without the capacitor. [3 marks]

Question Two (20 marks)

- a) Define the following terminologies:
 - (i) Junction field effect transistor
 - (ii) Pinch-off voltage
 - (iii) Shorted-gate drain current.
 - (iv) Gate-source cut off voltage

[4 marks]

b) Mention two characteristics of a good transimpedance amplifier.

[2 marks]

- c) Draw and explain the working of an N-channel junction field effect transistor. [6 marks]
- d) Explain why the gate voltage of an N-channel JFET should never be positive. [2 marks]
- e) A JFET has a drain current of 5 mA. If the shorted-gate drain current, I_{DSS} is 10 mA and the gate-source cut off voltage, $V_{GS(OFF)}$ is -6V, find the value of:
 - (i) gate-source voltage, V_{GS} ,
 - (ii) pinch-off voltage, V_P .
 - (iii) Using the information above, draw the I-V characteristic of this JFET. Clearly label all the points on the graph and show all the operating regions.[6

Question Three (20 marks)

(a) (i) Draw the static I-V characteristics of a diode. Name and indicate on the graph the two operating regions. [3

marks]

(ii) Explain how the p-type and n-type materials are arranged in a circuit for the mentioned operating regions. [2

marks

(b) In the circuit diagram below, the silicon diodes have a forward resistance of zero ohms.

Determine the current, I, flowing through the circuit.

[2

marks]

- (c) Define the following terminologies:
 - (i) Insulator

[1 mark]

(ii) Semiconductor

[1 mark]

(iii) Conductor

[1 mark]

(d) Define a rectifier and name two types of rectifiers.

[2 marks]

(e) The circuit shown below has four silicon diodes and the forward resistance of each diode is 1Ω .

Calculate the current through the 48 Ω resistor.

[3 marks]

- (f) There are two types of diodes used in solar panels.
 - (i) Name the two types of diodes.

[1 mark]

(ii) With the help of a diagram, explain how and why they are used.

[4 marks]

Question Four (20 marks)

- (a) Explain what Darlington transistors are and why they are used. Write its formula for current gain.[3]
- (b) State two characteristics of the common-emitter configuration of a transistor. [2 marks]
- (c) A transistor can operate as an amplifier or as a switch. Elaborate how this is achieved.

[5

marks]

- (d) A common base PNP transistor amplifier has an input resistance of 20Ω and the collector load is 1000Ω . A signal of 500mV is applied between the emitter and base. Draw the circuit diagram representing this information and calculate the voltage amplification, A_v . Assume that $\alpha=1$ and neglect the voltage drop due to the diode. [6 marks]
- (e) Sketch the output characteristics curves of an NPN bipolar transistor, label the graph in detail and show the Q-point. [4 marks]

Question Five (20 marks)

(a) Name six classes of integrated circuits.

[3

marks

(b) (i) Define the term MOSFET. Give three similarities and one difference between MOSFETs and JFETs. [5

marks]

(ii) Mention and briefly explain the two types of MOSFETs.

marks

(iii) Draw the symbols of the aforementioned MOSFETs for both the N-channel and P-channel types. [2

marks]

- (c) Write the Boolean expression, draw the truth table and the transistor-transistor logic circuit diagram of each the following:
 - (i) transistor AND gate,
 - (ii) transistor NOR gate.

[6

[4

marks]

