

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS **2021/2021 ACADEMIC YEAR** SECOND YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE

OF

BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATIONS ENGINEERING

COURSE CODE: ECE 221

COURSE TITLE: BASIC ELECTRONICS

DATE: TUESDAY, APRIL, 26TH, 2022

TIME: 8:00 – 10:00 AM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printled Pages. Please Turn Over.

Constants

 $1.38 \times 10^{-23} \text{ J/K}^{0}$ **Boltzmann's Constant** k 1.6×10^{-190} electronic charge $8.85 \times 10^{-12} \text{ F/m}$ Relative permittivity 3 $4\pi \times 10^{-7} \text{ H/m}$ -Relative permeability 6.67×10^{-34} h **Plancks Constant** $9.1 \times 10^{-31} \text{ Kg}$ Electron mass at rest m

QUESTION ONE

- a. Explain with the suitable illustrations how the n-type semiconductormaterial is formed.3 marks
- b. State Two main advantages the transformer coupled amplifier has over theR-C coupled amplifier.4 marks
- c. Show that the change in emitter current ΔI_E to the change in base current ΔI_B may be expressed as $\Delta I_E = 1$ $\Delta I_B = 1 \alpha$

Where α is the current gain in CB configuration

5 marks

- d. Explain the operation of a half-wave rectifier using suitable drawings and expressions.7 marks
- e. With aid of suitable illustrations and expressions, explain the principle operation of a varactor diode.5 marks
- f. Determine the value of a series resistor required to limit the current through an LED to 20mA with a forward voltage drop of 1.6 v when connected to a 10 v supply.5 marks

QUESTION TWO

a. Illustrate how the positive half-cycle of applied input signal becomesnegative at the output of the amplifier.6 marks

b. A transistor operating in the C_E mode draws a constant base current I_B =30 μ A. The collector current is found to change from 3.5mA to 3.7mA when the collector –emitter voltage changes from 7.5 v to 12.5 v. Calculate

i. Current gain in CE

3 marks

ii. Output resistance

3 marks

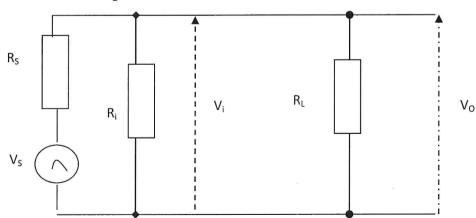
iii. Current gain CB

3 marks

c. Draw the three transistor modes and indicate the respective polarities of each terminal.5 marks

QUESTION THREE

a. Define the following terms:


i.	Dopant	1 mark
ii.	Electron-volt	1 mark
iii.	Mobility	1 mark
iv.	Resistivity	1 mark

- b. Describe the graphical representation of an amplifier operating using suitable illustration7 marks
- c. Derive that the ripple factor for a rectifier may be expressed as:-

$$\gamma = \frac{\sqrt{v^2 r.m.s - v^2 dc}}{v_{dc}}$$
 9 marks

QUESTION FOUR

a. Describe the operation of an n-channel field effect transistor 11 marks

Figure 1

The circuit of figure 1 is an equivalent of a single stage amplifier

Derive that:- $G_p = G_v \times G_i$

Where: G_p - Power gain

G_v – voltage gain Gi- current gain

9 marks

QUESTION FIVE

a. Derive to show that in JUGFET $\mu = r_d \times g_m$ Type equation here.

Where μ - multiplication factor

r_d - drain resistor

g_m - mutual conductance

3 marks

b. Briefly explain the operation of an LED device

5 marks

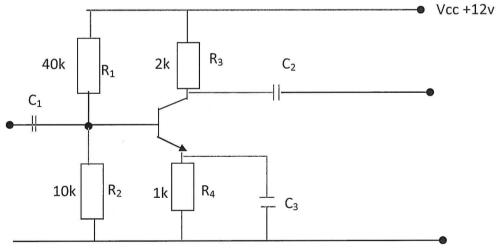


Figure 2

Using the given values in figure 2; β =100. Calculate the following biasing levels.

- (i) V_B
- (ii) V_E
- (iii) I_E
- (iv) Ic
- (v) V_{ce}
- (vi) I_B
- 12 marks