

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE (CHEMISTRY) AND BACHELOR OF INDUSTRIAL CHEMISTRY

COURSE CODE: SCI 461E

COURSE TITLE: GLASS, CERAMIC AND CEMENT

CHEMISTRY

DATE:

26TH APRIL 2022

TIME: 8.00 - 10.00

INSTRUCTIONS TO CANDIDATES

Total Marks: 70

Answer all the Questions

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

QUESTION ONE (19 Marks)

(a)	Define	the follow	wing and state their role in glass making:	
	(i)	Anne	aling	(6 marks)
	(ii)	Temp	pering	
	(iii)	Culle	ts	
(b)	Briefly	discuss w	hy some glass have the following properties:	
	(i)	Photo	ochromic/photosensitive glass	(3 marks)
	(ii)	Trans	sparency	(2 marks)
	(iii)	colou	red	(2 marks)
(c)	On the sa	ame grap	h, sketch the graph of a strong glass and a fragile glass s	tate any three
	differenc	es betwe	en the two	(6 marks)
			QUESTION TWO (17 Marks)	
(a)	State the	e purpose	es of drying ceramic products before firing	(2 marks)
(b)	State tw	o main f	actors which affect the packing of ions in ionic solids	(2 marks)
(c)	Define f	feldspar	and state its role in ceramics	(3 marks)
(d)	State fiv	e purpos	es of glazing in ceramics	(5 marks)
(e)	Define t	he sinter	ing process and briefly explain what occurs to the ceram	ic particles
	(5 marks)			
			QUESTION THREE (17 Marks)	
(8	a)	Define	cement	(2 marks)
(ł	o) '	Briefly	describe the process of manufacturing white cement	(4 marks)
(0	c)	State the	e role of the following ingredients in cement:	(2 marks)
		(i)	MgO	
		(ii)	SiO ₂	
(0	d)	State tw	o factors that influence heat of hydration in Portland cen	nent
				(2 marks)
(e	;)	List fou	r advantages of pozzolans	(4 marks)
(f)	Briefly	discuss the composition of acid resistant cement	(3 marks)

QUESTION FOUR (18 Marks)

(a) Define flint and its role in ceramics

(2 marks)

- (b) A soda-lime glass has a viscosity of 10^{14.6} P at 560°C. Calculate its viscosity at 675°C if the activation energy for viscous flow is 430 kJ/mol (5 marks)
- (c) State three ways of preparing coloured glass

(3 marks)

- (d) List four principle mineral compounds in Portland cement, their oxide formulae plus their respective symbols (4 marks)
- (e) Using Pauling's equation, calculate the percent covalent character of the following compounds: hafnium carbide, titanium carbide, tantalum carbide, boron carbide and silicon carbide, given:

 (4 marks)

Compound	Electrone	egativities
Compound	$X_{ m A}$	$X_{\mathbf{B}}$
HfC	1.2	2.5
TiC	1.3	2.5
TaC	1.4	2.5
BC	2.0	2.5
SiC	1.8	2.5

H				Pe	ric	odi	C	Га	ble	3							He
1.01	2	of the										13	14	15	16	17	4,00
Li	D ~		of the										_ 6	7	8	9	10
	Be		EI . 0004									В	C	I N	0	建	Ne
5,94 11	9.01		Elements 2006										12.01	14,01	15.99	19.00	20.18
			13 14 15 16 1/												18		
Na	Mg	_	-									Al	Si	P	S		Ar
22.99	24.31	3 21	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
		30 30 500	22	23	24	CONTRACTOR OF	_26		28	_29	_30	_31	32	33	34	35	36
K	Ca	Sc	11	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	B	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.41	69.72	72.64	74.92	78.95	79,90	83.80
LUBINS HOUSE		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Tel	I	Χe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	105.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	_73 	74	_75	76	_77	_78	79	80	81	82	83	84	8.5	86
Cs	Ba	La	Hf	la	W	Re	Os	Ir	Pt	Au		TI I	Pb	Bi	Pol	At	Ra
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	DC	Б	106	507	(1):)	109	1.4(1)	i di							
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(266)	(264)	(270)	(268)	(281)	(272)							

58	59	60		62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Fr	Tm	Yh	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94		96	PM: 177	1 CT.		all Total	SET AND		
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Fs	Fm	Md	Mo	16
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)				(258)		(262)