

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS MAIN EXAMINATIONS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOTECHNOLOGY

COURSE CODE:

SBM 324

COURSE TITLE:

BIOREACTOR

DATE: MONDAY, 25TH APRIL 2022

TIME: 3:00 - 5:00 P.M.

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in section A and ANY TWO selected from section B

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

SECTION A (SHORT ANWSER QUESTIONS, 40 MARKS)

- 1. Outline the steps followed during oxygen transfer from the gas bubble to the cell. (3Mks)
- 2. Where G is generation time, n is number of generations and t is time in min/hours derive the equation for microbial growth by binary fission. (6Mks)
- 3. What is the significance of the following Michaelis-Menten parameters? (5mks)
 - i. Michaelis constant, K_m
 - ii. Maximum velocity, V_{max}
- 4. The mechanism underlying the controlling effect of the dilution rate is expressed in the Monod equation. At steady state, show that μ =D (6Mks)
- 5. A pilot sterilization process is carried out in 10⁸dm³ vessel with a medium containing 10³ organisms/cm³ with a probability of 1 in hundred microorganisms getting contaminated,
 - a. Calculate the overall del factor(Δ) of the reaction

(3Mks)

- b. Calculate the overall del factor(Δ) of the reaction if scaled up by 100 times for an industrial production (2Mks)
- c. Given the holding time=15.52 and the cooling time=10.34. Calculate the overall del factor(Δ) for the scaled up reaction process in b. (2mks)
- 6. What is an antifoam agent and state the properties of an ideal antifoam. (5mks)
- 7. Derive he equation that conforms with the thermal destruction of Nutrients in a fermentor (5Mks)
- 8. Explain the importance of the following in a bioreactor.

(3mks)

- i. Sparger
- ii. Baffles
- iii. Sealing
- iv. Agitation
- v. Jacket
- vi. Motor
- **SECTION B (ESSAY QUESTIONS, 30 MARKS)**
- 9. The following kinetic data were obtained for an enzyme in the absence of any inhibitor (1), and in the presence of two different inhibitors, (2) and (3), each at a concentration of 7.0 mM. Assume the total enzyme concentration, [Et], is the same for each experiment.

[S] μM	with 0.0 nM	V (µmol/min) with 7.0 mM Inhibitor (2)	with 7.0 mM
		-	
0.4	0.22	0.21	0.20
0.67	0.29	0.26	0.24
1.00	0.32	0.30	0.28
2.00	0.40	0.36	0.32

- i. Using the Lineweaver–Burk plot, determine Vmax and KM for the uninhibited enzyme. [13 marks]
- a) Determine the type of inhibition for the inhibitor binding to the enzyme, for experiments (2) and (3) [2 marks])