(University of Choice) ## MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST) MAIN CAMPUS **UNIVERSITY EXAMINATIONS** MAIN EXAMINATION **2021/2022 ACADEMIC YEAR** FIRST YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE (CHEMISTRY) AND BACHELOR OF EDUCATION SCIENCE **COURSE CODE:** **SCH 111** COURSE TITLE: **INORGANIC CHEMISTRY** **DATE**: 29th April, 2022 **TIME**: 12.00 PM - 2.00 PM **INSTRUCTIONS TO CANDIDATES** Total Marks: 70 Answer all the Questions. Therein is a graph paper. TIME: 2 Hours MMUST observes ZERO tolerance to examination cheating This Paper Consists of 4 Printed Pages. Please Turn Over | QUESTION ONE (17 Marks) | Q | UESTI | ON | ONE | (17) | Marks) | |--------------------------------|---|-------|----|-----|------|--------| |--------------------------------|---|-------|----|-----|------|--------| | (a) State the difference between an orbit and an atomic | c orbital. | (2 marks) . | |---|------------|--------------| |---|------------|--------------| (b) State any two properties of covalent compounds (2 marks) - (c) Metallic compounds are good conductors of electricity. Explain (2 marks) - (d) Use the sea of electrons model to explain why Magnesium has a higher melting point (650 °C) than sodium (97.79 °C). (2 marks) - (e) Distinguish between electron affinity and electronegativity. (2 Marks) - (f) State and describe any two factors that affect solubility of salts. (2 marks) - .(g) Give two examples of anionic ligands, stating their respective chemical names. (2 marks). - (h) State one use of each of the following complexes. (3 marks) - i) platinum complex - ii) Haemoglobin - iii) [Ag (NH₃)₂]⁺ -tollen reagent ## **QUESTION TWO (19 MARKS)** - (a)Explain the various types of quantum numbers (4 marks) - (b) Write the condensed electron configuration for the following atoms and determine the number of unpaired electrons in each by filling in the energy levels. (4 marks - (i) Sulphur (S) - (ii) Potassium (K) - (c) Write the Schrodinger wave equation for Hydrogen atom and explain the physical significance of the ψ^2 (4 marks) - (d) What are the possible values of the magnetic quantum number when the principle quantum number is 4 and the Angular momentum quantum number is 1. (2 marks) | (e) Using an example, define a bidentate ligand. (2 marks) | |--| | (f) Give the chemical name of the following compounds (3 marks) | | (a) $[Mn (CN)_6]^4$ | | (b) [Pt Cl ₄] ²⁻ | | (d) [Ag $(NH_3)_2$] [BF ₄] | | | | QUESTION 3 (19 marks) | | (a) With examples, define a polyatomic compound (3 marks) | | (b) State any two factors affecting the actual bond angle of a molecule. (2 marks): | | c) Although geometries of NH ₃ and H ₂ O molecules are distorted tetrahedral, bond angle of water is less than that of ammonia. Discuss (3mks) | | (d) Using an illustration, discuss the sp ³ hybridization in a methane molecule in terms of shape and bond angle. (5 marks) | | (e) Discuss the formation of Pie(π) bonds and Sigma (σ) bond). (4 marks) | | (f) Using the VSEPR model predict the shapes of the following molecules (2marks) i. PF₅ ii SiCl₄ | | | ## QUESTIONS 4 (15 marks) - a) Define an acid and a base using Arrhenius theory (1marks) - b) With relevant examples differentiate between the following terms in each case (6mks) - (i) Organic acid and inorganic acid - (ii) A polar covalent bond and a nonpolar covalent bond - (iii) Hydracids and oxyacids - c) Discuss 2 factors that affect the strength of the acid by considering the acids HOCl and HOClO₃ (2 marks) - (d) What is the difference between iron compounds given below? K₄[Fe(CN)₆] and FeSO₄ .(NH₄)₂ SO₄.6H₂O. (2 marks) e) Ammonia is very soluble in water. This gas is bubbled through 500 cm³ of water to form a solution of ammonium hydroxide. The equation below represents the chemical reaction taking place. $$NH_{3(g)} + H_2O_{(1)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$$ - i. How would you classify ammonia in terms of Bronsted-Lowry theory? Explain (2mks). - ii. Identify the acid and its conjugate base for the reverse reaction (2 marks) ## **Elements of the Periodic Table** | | | 1 | | | | | | | | OGI | • | 4010 | | | | | | | |---|-------------------------|------------------|-------------------|------------------|------------------|-------------------|-----------------|--------------------|--------------------|--------------------|-----------------|-----------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------------------------| | | 1A
(1) | | | | | | | | | | | | | | | | | 8A
(18) | | | 1 | | | | | | | | | | | | | | | | | 2 | | 1 | H
1.008 | 2A
(2) | | | | | | | | | | | 3A
(13) | 4A
(14) | 5A
(15) | 6A
(16) | 7A
(17) | He 4.003 | | 2 | 3
Li
6.941 | 4
Be
9.012 | | | | | | | | | | | 5
B
10.81 | 6
C
12.01 | 7
N
14.01 | 8
O
16.00 | 9
F
19.00 | 10
Ne
20.18 | | | 11 | 12 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | 3 | Na
22.99 | Mg
24.31 | 3B
(3) | 4B
(4) | 5B
(5) | 6B
(6) | 7B
(7) | (8) | — 8B —
(9) | (10) | 1B
(11) | 2B
(12) | AI
26.98 | Si 28.09 | P
30.97 | S
32.07 | CI 35.45 | Ar
39.95 | | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | 4 | K
39.10 | Ca 40.08 | Sc 44.96 | Ti 47.88 | V 50.94 | Cr 52.00 | Mn
54.94 | Fe 55.85 | Co 58.93 | Ni
58.69 | Cu 63.55 | Zn 65.39 | Ga 69.72 | Ge 72.61 | As 74.92 | Se 78.96 | Br 79.90 | Kr
83.80 | | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | 5 | Rb 85.47 | Sr 87.62 | Y
88.91 | Zr 91.22 | Nb 92.91 | Mo 95.94 | Tc (98) | Ru
101.1 | Rh 102.9 | Pd
106.4 | Ag 107.9 | Cd
112.4 | In
114.8 | Sn 118.7 | Sb 121.8 | Te 127.6 | I
126.9 | Xe
131.3 | | | 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | .78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | 6 | Cs 132.9 | Ba
137.3 | La 138.9 | Hf 178.5 | Ta 180.9 | W
183.9 | Re 186.2 | Os
190.2 | Ir
192.2 | Pt
195.1 | Au 197.0 | Hg 200.6 | TI 204.4 | Pb 207.2 | Bi
209.0 | Po (209) | At
(210) | Rn
(222) | | 7 | 87
F r | 88
Ra | 89
Ac | 104
Rf | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
Mt | 110 | 111 | 112 | As of mi | | lements 1 | 10 through | | | | | (223) | (226) | (227) | (261) | (262) | (266) | (262) | (265) | (266) | (269) | (272) | (277) | 100 000000 DESC | | | | | | | | | <u> </u> | | | | | | | | | | _ | | | | |---|-------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---------------------------|--------------------------| | 6 | Lanthanides | 58
Ce
140.1 | 59
Pr
140.9 | 60
Nd
144.2 | 61
Pm
(145) | 62
Sm
150.4 | 63
Eu
152.0 | 64
Gd
157.3 | 65
Tb
158.9 | 66
Dy
162.5 | 67
Ho
164.9 | 68
Er
167.3 | 69
Tm
168.9 | 70
Yb
173.0 | 71
Lu
175.0 | | 7 | Actinides | 90
Th
232.0 | 91
Pa
(231) | 92
U
238.0 | 93
Np
(237) | 94
Pu
(242) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 100
Fm
(257) | 101
Md
(258) | 102
No
(259) | 103
Lr
(260) |