

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

MAIN EXAMINATION

2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF

BACHELOR OF SCIENCE (CHEMISTRY) AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

SCH 111

COURSE TITLE:

INORGANIC CHEMISTRY

DATE: 29th April, 2022

TIME: 12.00 PM - 2.00 PM

INSTRUCTIONS TO CANDIDATES

Total Marks: 70

Answer all the Questions.

Therein is a graph paper.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over

QUESTION ONE (17 Marks)	Q	UESTI	ON	ONE	(17)	Marks)
--------------------------------	---	-------	----	-----	------	--------

(a) State the difference between an orbit and an atomic	c orbital.	(2 marks) .
---	------------	--------------

(b) State any two properties of covalent compounds

(2 marks)

- (c) Metallic compounds are good conductors of electricity. Explain (2 marks)
- (d) Use the sea of electrons model to explain why Magnesium has a higher melting point (650 °C) than sodium (97.79 °C). (2 marks)
- (e) Distinguish between electron affinity and electronegativity. (2 Marks)
- (f) State and describe any two factors that affect solubility of salts. (2 marks)
- .(g) Give two examples of anionic ligands, stating their respective chemical names. (2 marks).
- (h) State one use of each of the following complexes. (3 marks)
 - i) platinum complex
 - ii) Haemoglobin
 - iii) [Ag (NH₃)₂]⁺ -tollen reagent

QUESTION TWO (19 MARKS)

- (a)Explain the various types of quantum numbers (4 marks)
- (b) Write the condensed electron configuration for the following atoms and determine the number of unpaired electrons in each by filling in the energy levels. (4 marks
- (i) Sulphur (S)
- (ii) Potassium (K)
- (c) Write the Schrodinger wave equation for Hydrogen atom and explain the physical significance of the ψ^2 (4 marks)
- (d) What are the possible values of the magnetic quantum number when the principle quantum number is 4 and the Angular momentum quantum number is 1. (2 marks)

(e) Using an example, define a bidentate ligand. (2 marks)
(f) Give the chemical name of the following compounds (3 marks)
(a) $[Mn (CN)_6]^4$
(b) [Pt Cl ₄] ²⁻
(d) [Ag $(NH_3)_2$] [BF ₄]
QUESTION 3 (19 marks)
(a) With examples, define a polyatomic compound (3 marks)
(b) State any two factors affecting the actual bond angle of a molecule. (2 marks):
c) Although geometries of NH ₃ and H ₂ O molecules are distorted tetrahedral, bond angle of water is less than that of ammonia. Discuss (3mks)
(d) Using an illustration, discuss the sp ³ hybridization in a methane molecule in terms of shape and bond angle. (5 marks)
(e) Discuss the formation of Pie(π) bonds and Sigma (σ) bond). (4 marks)
 (f) Using the VSEPR model predict the shapes of the following molecules (2marks) i. PF₅ ii SiCl₄

QUESTIONS 4 (15 marks)

- a) Define an acid and a base using Arrhenius theory (1marks)
- b) With relevant examples differentiate between the following terms in each case

(6mks)

- (i) Organic acid and inorganic acid
- (ii) A polar covalent bond and a nonpolar covalent bond
- (iii) Hydracids and oxyacids
- c) Discuss 2 factors that affect the strength of the acid by considering the acids HOCl and HOClO₃ (2 marks)
- (d) What is the difference between iron compounds given below? K₄[Fe(CN)₆] and

FeSO₄ .(NH₄)₂ SO₄.6H₂O.

(2 marks)

e) Ammonia is very soluble in water. This gas is bubbled through 500 cm³ of water to form a solution of ammonium hydroxide. The equation below represents the chemical reaction taking place.

$$NH_{3(g)} + H_2O_{(1)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$$

- i. How would you classify ammonia in terms of Bronsted-Lowry theory? Explain (2mks).
- ii. Identify the acid and its conjugate base for the reverse reaction (2 marks)

Elements of the Periodic Table

		1								OGI	•	4010						
	1A (1)																	8A (18)
	1																	2
1	H 1.008	2A (2)											3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	He 4.003
2	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
	11	12											13	14	15	16	17	18
3	Na 22.99	Mg 24.31	3B (3)	4B (4)	5B (5)	6B (6)	7B (7)	(8)	— 8B — (9)	(10)	1B (11)	2B (12)	AI 26.98	Si 28.09	P 30.97	S 32.07	CI 35.45	Ar 39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90	Kr 83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3
	55	56	57	72	73	74	75	76	77	.78	79	80	81	82	83	84	85	86
6	Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	W 183.9	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	TI 204.4	Pb 207.2	Bi 209.0	Po (209)	At (210)	Rn (222)
7	87 F r	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112	As of mi		lements 1	10 through		
	(223)	(226)	(227)	(261)	(262)	(266)	(262)	(265)	(266)	(269)	(272)	(277)	100 000000 DESC					

		<u> </u>										_			
6	Lanthanides	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
7	Actinides	90 Th 232.0	91 Pa (231)	92 U 238.0	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)