40

MASINDE MULIROUNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEARSECONDSEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE MEDICAL BIOTECHNOLOGY MAIN EXAMS

COURSE CODE:

BMB 324

COURSE TITLE:

HUMAN POPULATION GENETICS

DATE: 26/04/2022

TIME: 12.00 -2.00 PM

INSTRUCTIONS TO CANDIDATES

This paper is divided into three sections, **A B** and **C**, carrying respectively: Multiple Choice Questions (**MCQs**), Short Answer Questions (**SAQs**) and Long Answer Questions (**LAQs**).

TIME: 2 Hours

SECTION A: MULTIPLE CHOICE QUESTIONS (20 MKS)

Instructions to the candidate

- The section has twenty (20) multiple choice questions (MCQs)
- Each question has a stem and four (4) completion options, of which only one is correct
- Write your answers on the provided university examination booklet.
- A local geographic population of reproducing individuals that has physical continuity over time and space is:

 A. Deme
 - B. Genotype frequencies
 - C. Gene pool
 - D. Population of inference
- 2. The population of DNA molecules that are collectively shared by the individuals in the deme:
 - A. Polymorphisms
 - B. Genotype frequencies
 - C. Gene pool
 - D. Population of inference
- 3. The multiple allelic states are called:
 - A. Polymorphisms
 - B. Genotype frequencies
 - C. Gene pool
 - D. Deme
- 4. In population genetics, demes are characterized by_____
 - A. Polymorphisms
 - B. Genotype frequencies
 - C. Gene pool
 - D. Population of inference
- 5. A polymorphic nucleotide is known as
 - A. Deletion
 - B. SNP
 - C. Evolution nucleotide
 - D. Multigene families
- 6. A complete set of chromosomes is
 - A. Nuclear genome
 - B. Mitochondrial genome
 - C. Genome
 - D. Genes
- 7. In humans the nuclear genome consists of _____ set of chromosomes:
 - A. 22
 - B. 46
 - C. 92
 - D. 23
- 8. The mitochondrial genome consists of _____ chromosomes
 - A. One
 - B. Two
 - C. Four
 - D. Six
- 9. The units of functional information encoded in the DNA sequence
 - A. Nuclear genome
 - B. Mitochondrial genome
 - C. Genome

Direct Genes
10. The amino-acid coding portions of the DNA sequence
A. Introns
B. Exome
C. Exons D. mRNA
11. The amino-acid coding subset of the genome
A. Introns
B. Exome
C. Exons
D. mRNA
12. The extrinsic sequences that do not code for amino acids.
A. Introns
B. Exome
C. Exons
D. mRNA
13. The protein-coding gene but which are non-functional for protein production.
A. Pseudogenes
B. RNA coding genes
C. Noncoding RNA
D. mRNA
14. There are for which the functional product is some type of RNA
A. Pseudogenes
B. RNA coding genes
C. Noncoding RNA
D. mRNA
15. The most abundant transposable elements in the human genome are:
A. LINE-1
B. Microsatellites
C. Satellites
D. Alu elements
16. Tandem repeated sequences of fewer than 10 and as short as 2 nucleotides:
A. LINE-1
B. Microsatellites
C. Satellite DNA
D. Minisatellites
17 is the largest tandom arrays
17is the largest tandem arrays A. LINE-1
B. Microsatellites
C. Satellite DNA
D. Minisatellites
18tandem repeats in which the repeated element varies from 10 (or 7 or 12) nucleotides
in length up to 100 nucleotides:
A. LINE-1
B. Microsatellites
C. Satellite DNA
D. Minisatellites
=: ************************************

19.			are the sites of spindle micr	otubule attachm	ent · · · · · · · · · · · · · · · · · · ·
	A	٩.	Centromere	Δ	to the contract the first of the first
	E	3.	Telomeres		Karangaran na jag
	C	С.	GC islands		,
	, I	Э.	Nucleosome		
20			cap the ends of eukaryotic chr	omosomes and o	consist of DNA and protein
	Α	٨.	Centromere		· · · · · · · ·
	E	3.	Telomeres		
	C	Э.	GC islands		
	Ι	Э.	Nucleosome		

SECTION B 40 MARKS

1.	Highlight the causes of genetic variation	[5 Marks]
2.	Explain the bottleneck effect in population genetics	[5 Marks]
3.	Describe how non-random mating affect populations	[5 Marks]
4.	Explain the founder effect	[5 Marks]
5.	Elaborate on activators and repressors of transcription	[5 Marks]
6.	Define: response elements; Promoters; Enhancers; Silencers and Insulators	[5 Marks]
7.	Describe rearrangements that occur when breaks occur in chromosomes	[5 Marks]
8.	Explain the cause of non-allelic homologous recombination (NAHR)	[5 Marks]

SECTION C: LONG ANSWER QUESTIONS (60 MKS)

Instructions

- This section has THREE long answer questions (LAQs), totalling a maximum of SIXTY (60) marks
- Answer all questions
- Write your answers on the provided university examination booklet tinguish between genetic drift and natural selection

Ι.	Distinguish between genetic drift and natural selection	[20 Marks]
2.	Discuss gene flow and mutations	[20 Marks]
3.	Elucidate malaria resistance as an evidence of positive selection in humans	[20 marks]