

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN BUILDING CONSTRUCTION

COURSE CODE: BTB 231

COURSE TITLE: CONCRETE TECHNOLOGY

DATE: Monday 8TH February 2021 TIME: 9.00 – 11.00 AM

INSTRUCTIONS:

- 1. This paper consists of **FOUR** questions.
- 2. ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS.
- 3. Marks for each question are indicated in the parenthesis.

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 7 Printed Pages. Please Turn Over.

Question ONE (30 Marks)

- a) Define the following terms as used in concrete technology:
 - i. Aggregates
 - ii. Cement
 - iii. Admixtures
- iv. Concrete [4 Marks]b) What is a structural material? Briefly explain why concrete is regarded as a structural
 - material. [2 Marks]
- c) Describe any **THREE** types of concrete classification, giving one example in each and usage.

	[6 Marks]
d) Describe any FOUR qualities of a good concrete.	[2 Marks]

- e) Highlight FOUR types of impurities in sand. [2 Marks]
- f) Briefly describe the bulking phenomenon in sand and state THREE effects of bulking of sand on concrete. [3 Marks]
- g) Highlight any FOUR properties of a good cement for use in concrete production. [2 Marks]
- h) Design a concrete mix using the following data:
 28 days mean characteristic strength = 30 MPa, Risk factor K = 1.64, Standard deviation S = 8 N/mm², The maximum size of coarse aggregate = 20mm, Aggregate type = crushed 60% Fine aggregate passes through the 600-micron sieve, Slump range 60-180, 25 mm cover to reinforcement, specific gravity of aggregate = 2.65, ordinary Portland cement of 42.5 MPa and exposed to a moderate environmental condition. [9 Marks]

NB: Use the tables, curves and figures attached at the end of the question paper.

Question TWO (20 marks)

- a) Describe the TWO classes/types of aggregates, giving one example in each case. [3 Marks]
- b) Briefly describe the following properties of coarse aggregates:
 - i. Size
 - ii. Shape
 - iii. Surface texture
 - iv. Specific gravity
 - v. Soundness
- c) Highlight **THREE** factors that affect the bulk density of coarse aggregates. [4.5 Marks]

CONCRETE TECHNOLOGY

Page 2 of 7

[3 Marks]

[1.5 Marks]

d) Highlight any THREE precautionary measures to be undertaken in storing of cement.

 e) Highlight THREE reasons why accelerator admixtures would be added to concrete to enhance the early strength development. [3 Marks]

f) State THREE quality requirements of aggregates.

Question THREE (20 marks)

- a) What is Fresh concrete? What is the importance of plastic state of fresh concrete during construction period? [3 Marks]
- b) Briefly describe the process of determining the concrete slump (Slump Test) [7 Marks]

c) What is workability of concrete? State TWO ways of increasing workability without compromising the strength of the concrete. [3 Marks]
d) Describe how the following factors affect workability of concrete. [3 Marks]

- i. Water content
- ii. Cement content
- iii. Aggregate size
- e) Highlight FOUR main requirements which form the basis of selection and proportioning of mix ingredients during the mix design of concrete. [4 Marks]

Question FOUR (20 Marks)

- a) What is hardened concrete? [1 Marks]
- b) Briefly describe the following properties of hardened concrete: [3 Marks]
 - i. Compressive strength
 - ii. Durability
 - iii. Shrinkage
- c) What is formwork? [1 Marks]
- d) Highlight FIVE qualities of a good formwork [5 Marks]
- e) Highlight FOUR basic requirements of formwork. [4 Marks]
- f) Describe THREE factors that determines the removal time of formwork. [3 Marks]
- g) Describe **THREE** classes/types of loads that are being supported by formwork.

[3 Marks]

CONCRETE TECHNOLOGY	Page 3 of 7
---------------------	---------------------------

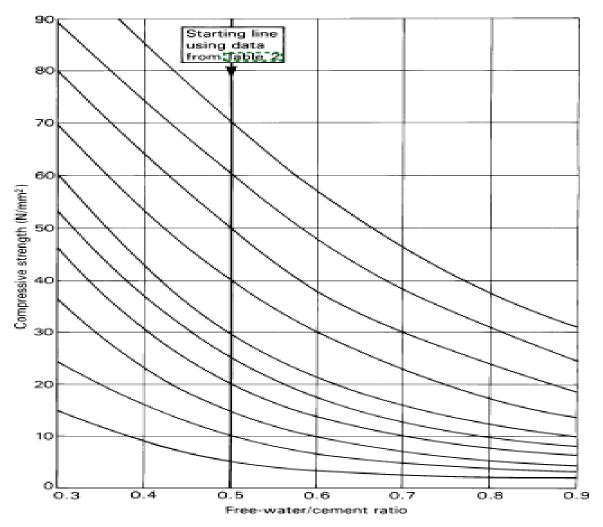


Figure 4: Relationship between compressive strength and free water/cement ratio

Table 2 Approximate compressive strengths (N/mm ²) of						
concrete mixes made with a free-water/cement ratio of 0.5						
Cement	Type of	Compressive strengths (N/mm ²)				
strength	coarse	Age (days)				
class	aggregate	3	7	28	91	
42.5	Uncrushed	22	30	42	49	
	Crushed	27	36	49	56	
52.5	Uncrushed	29	37	48	54	
	Crushed	34	43	55	61	

Throughout this publication concrete strength is expressed in the units N/mm².

1 N/mm² = 1 MN/m² = 1 MPa. (N = newton; Pa = pascal.)

Table 3 Approximate free-water contents (kg/m ³) required to give various levels of workability							
Slump (mm)		0–10	10-30	30-60	60–180		
Vebe time (s)		>12	6-12	3-6	0-3		
Maximum size							
of aggregate	Type of						
(mm)	aggregate						
10	Uncrushed	150	180	205	225		
	Crushed	180	205	230	250		
20	Uncrushed	135	160	180	195		
	Crushed	170	190	210	225		
40	Uncrushed	115	140	160	175		
	Crushed	155	175	190	205		

Note: When coarse and fine aggregates of different types are used, the free-water content is estimated by the expression:

 $^{2}/_{3}W_{f} + ^{1}/_{3}W_{c}$

where $W_{\rm f}$ = free-water content appropriate to type of fine aggregate

and W_c = free-water content approportiate to type of coarse aggregate.

Concrete structure exposure	Reinforced concrete Minimum aggregate size (mm)			Non-reinforced concrete Maximum aggregate size (mm)		
	Mildly-protected from the heat and exposed to little rain, except for short periods of time while under construction.	220	250	290	200	220
Intermediate-sheltered from the rain and mid-water reservoir for long periods of time. Concrete used for structures immersed in the water.	260	290	340	220	250	300
Aggressive-exposure to sea water, rain and direct sun and so forth interchangeably.	320	360	410	270	310	360

Table 4: Minimum cement content (kg/m³) for various exposure conditions of concrete.

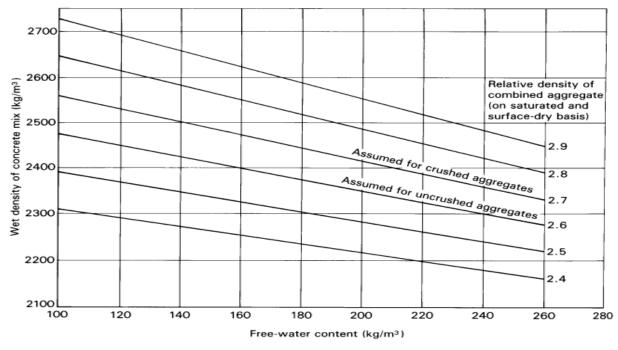
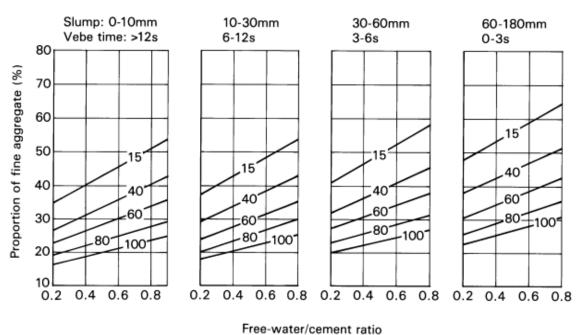



Figure 5 Estimated wet density of fully compacted concrete

CONCRETE TECHNOLOGY

Maximum aggregate size: 20mm

Free-water/cement ra

Figure 6 (continued)