(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS $2014 / 2015$ ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS
FOR THE DEGREE
OF
MASTER OF SCIENCE IN WATER RESOURCES
ENGINEERING

COURSE CODE: CWE 803

COURSE TITLE: HYDRAULICS OF OPEN CHANNEL FLOW

DATE: $16^{\text {TH }}$ DECEMBER 2014
TIME: 2.00PM - 5.00PM

INSTRUCTIONS:

1. This question paper contains FIVE questions.
2. Answer ALL questions.
3. Your workings should be logical and clear.
4. A formula sheet is attached.
5. Examination duration is $\mathbf{3}$ Hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 4 Printed Pages. Please Turn Over.

Question 1 (20 marks)

By considering velocity similitude in the Manning's and Froude's relationships, show that:
(a) For a geometrically similar model with surface fall in prototype equal to that in the model then $n_{r}=L_{r}^{1 / 6}$ (8 marks)
(b) For a geometrically similar model with s_{r} variable then the model can be tilted to satisfy the equation
$s_{r}=\left(\frac{n_{r}}{L_{r}^{1 / 6}}\right)^{2} \quad(6$ marks $)$
(c) For a distorted model $d_{r}=L_{r}\left(\frac{n_{r}}{L_{r}^{1 / 6}}\right)^{2}$

(6 marks)

Question 2 (20 marks)

A rectangular channel with a flat bed and width 5 m and maximum depth of 2 m has a discharge of $10 \mathrm{~m}^{3} / \mathrm{s}$. If the normal depth of flow is 1.25 m , determine the depth of flow in a section where the bed rises 0.2 m over a distance of 1 m . assume that friction losses are negligible. (20 marks)

Question 3 (20 marks)

An open channel of economical trapezoidal section with sides inclined at 60 degrees to the horizontal is required to give a discharge of $10 \mathrm{~m}^{3} / \mathrm{s}$ when the slope is 1 in 1600 . Calculate the dimensions of the cross section assuming Checy constant $\mathrm{C}=74$ in SI units. (20 marks)

Question 4 (20 marks)

It is required to measure the flow continuously in a long irrigation canal. The canal is 8 m wide and can sensibly be considered to have a rectangular cross section for which the Checy's C $=40$ in SI units, the bed slope of the channel is 1 in 2750. A venture meter with a width of 3 m and a bed hump of height 0.6 m has been chosen for the purpose. When the depth of flow immediately upstream of the venture meter is 1.3 m , then determine the following:
(a) The discharge in the canal. ($\mathbf{8}$ marks)
(b) The depth of flow at the highest point of the bed hump ($\mathbf{6}$ marks).
(c) The normal depth of flow in the canal (6 marks).

Question 5 (20 marks)

(a) Show that the celerity of a surge wave flowing the closure or opening of a gate valve in an open channel is given by $C=-V_{1}+\left[g h_{1}\left(\frac{h_{2}}{2 h_{1}}\left(1+\frac{h_{2}}{h_{1}}\right)\right)\right]^{1 / 2}$ where sub-scripts 1 and 2 refer to the parameters at sections 1 and 2 as shown in the figure below: ($\mathbf{1 0}$ marks)

(b) A rectangular channel 6 m wide has a depth of flow of 1.5 m and carries $30 \mathrm{~m}^{3} / \mathrm{s}$ of water discharge. The flow is suddenly reduced by 40% due to the gate closure. Calculate the speed and height of the surge wave upstream of the gate assuming that the channel is sufficiently deep to accommodate the surge. (10marks)

FORMULA SHEET

Formula	Expression
Manning's Formula	$V=\frac{1}{n} \cdot R^{2 / 3} \cdot S^{1 / 2}$
Chezy's Formula	$Q=A C \sqrt{m i}$
Specific Energy	$E=y+\frac{V^{2}}{2 g}$
Critical depth flumes	$Q=1.71 C_{d} B(E-h)^{3 / 2}$
Specific Force	$F=A \bar{x}+\frac{A V^{2}}{g}$
Conjugate depths for rectangular channels	$\frac{y_{1}}{y_{2}}=-\frac{1}{2}+\frac{1}{2} \sqrt{1+8 F_{n 2}}$

