MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS $2014 / 2015$ ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DIPLOMA

IN
CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: DCE 057

COURSE TITLE:
MATHEMATICS I

DATE: 18TH DECEMBER 2014
TIME: 1 1.00AM - 1.00PM
INSTRUCTIONS:

1. Answer Question ONE and any other THREE questions
2. Examination duration is $\mathbf{2}$ Hours

MMUST observes ZERO tolerance to examination cheating

Question one (30 mks)

a.(i) Find the number of inversions in the permutations of;
(2 mks)

1. (34152)
2. (42531)

Classify each of the permutations as even or odd.
ii. find all the values of \angle for which $\operatorname{det}(A)=0$,
$A=\left(\begin{array}{cc}\Lambda-1 & -2 \\ 1 & K-4\end{array}\right)$
(2 mks)
b. Given that $f(x)=5 x+1, g(x)=\frac{1}{x}$ and $h(x)=2 x-5$, solve for x in the equation

$$
f^{\prime \prime} g^{-1}(x)=h^{-1}(x)
$$

c. If $x+\frac{1}{x}=1$, show that $x^{2}+\frac{1}{x^{2}}=-2$
what is the value of $x^{5}+\frac{1}{x^{5}}$
d. Solve the inequality $\frac{4-x}{1 x+3}<3$
e. If ${ }^{n} P 4=12 x^{n} P 2$,
i. find n
ii. Solve for n in ${ }^{n} \mathrm{C} 2=3$
f. Show that $A .(B+C)=A . B+A . C$
g. If $R(u)=x(u) j+z(u)$, where x, y and z are differentiable functions of $a u$.Show that;

$$
\begin{equation*}
\frac{\delta R}{\delta u}=\frac{\delta x}{\delta u} I+\frac{\delta y}{\delta u} J+\frac{\delta z}{\delta u} K \tag{3mks}
\end{equation*}
$$

h. Express in $\frac{2+3 i}{1+2 i}$ the form $p+i q$; hence find $|\mathrm{p}+\mathrm{iq}|$

Question two (10 mks)

A right circular cone has its vertex at the point $(2,1,3)$ and the centre of its plane face at the point ($1,-2,2$). A generator of the cone has equation $r=(2 i+j+3 k)+(i-j-k)$. Find the radius of the base of the cone and hence its volume.

Question three (10 mks)

Given that $(x+1)$ and ($x-2$) are factors of expression $f(x)=x^{3}+a x^{2}+b$ find the values of a and b. What is the other factor.

Question Four (10 mks)

a. Obtain the binomial expansion of $(1-2 x)^{5}$. Use your expansion to evaluate $(0.95)^{5}$ correct to 5 decimal places.
b. If $\int_{1}^{w} 3(x+1)^{2} \delta x=a^{3}+11$ find the values of a.
c. Differentiate from first principles

$$
\begin{equation*}
f(x)=x^{3}-2 x \tag{3mks}
\end{equation*}
$$

Question five (10 mks)

a. Show that $\sin 3 A=3 \sin A-4 \sin ^{3} A$.
b. Solve $2 \cos \theta=\sin \left(\theta+30^{\circ}\right)$ giving the general values of θ.
c. Solve the equation $2 \cos 2 \theta-\sin \theta=1$ for values of θ between 0 and 2π.

Question Six
a) Use Cramer's rule to solve for z without solving for x, y and w .

$$
\begin{aligned}
& 4 x+y+z+w=6 \\
& 3 x+7 y-z+w=1 \\
& 7 x+3 y-5 z+8 w=-3 \\
& x+y+z+2 w=3
\end{aligned}
$$

b) If $\varnothing(x, y, 2)=3 x^{2} y-y^{3} x^{2}$, find $\nabla \varnothing$ at the point $(1,-2,-1)$
c) Complete the formulas below
i. $\nabla(\varnothing+4)=$
ii. $\nabla(\mathrm{A}+\mathrm{B})=$
iii. $\nabla(\nabla \varnothing)=$
iv. $\nabla(A+B)=$

