

(University of Choice)

MASINDE MULIRO UNIVERSITY OF **SCIENCE AND TECHNOLOGY** (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SPECIAL/SUPP EXAMINATIONS

FOR THE AWARD OF DIPLOMA IN ENGINEERING

COURSE CODE:

DEE 086

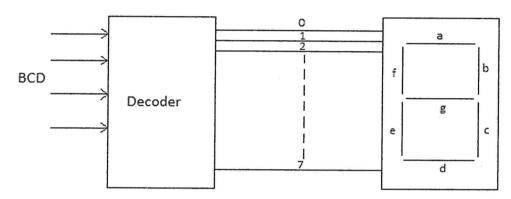
COURSE TITLE:

INSTRUMENTATION

DATE: Friday 7th Oct, 2022 **TIME:** 8.00a.m – 10.00a.m

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. OUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.


TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

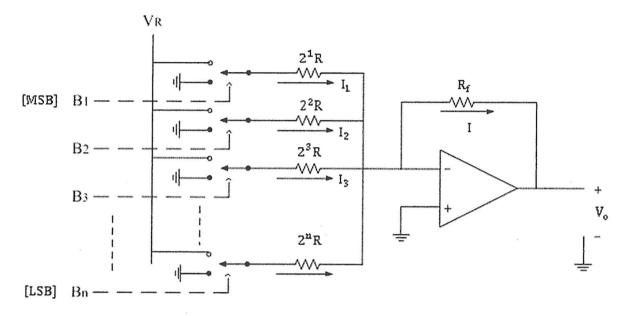
QUESTION ONE (30mks)

- a) (i) Define the term instrumentation. (2Mks)
 - (ii) With the aid of a labelled diagram, explain the FOUR blocks of an instrumentation system giving an example in each case. (8Mks)
- b) (i) State and explain the **four** dynamic characteristics of a measuring instrument. (4Mks)
 - (ii)List THREE causes of Systematic errors in an instrument. (3Mks)
- c) (i) A parallel plate capacitor has an area of 0.4cm^2 and distance between the plate is 15mm. Calculate its capacitance given dielectric constant of the material is 2.5. Taking Absolute permittivity $\epsilon_0 = 8.85 \times 10^{-12} \text{F/m}$. (3Mks)
- d) The figure below shows a block diagram for a BCD to seven segment display. Complete the bit pattern for the table below. (8Marks)

0	١
	,
_	/

Decimal	BCD CODE	7 SEGMENT OUTPUT
number	D C B A	abcdefg
0	0 0 0 0	1 1 1 1 1 1 0
1	0 0 0 1	0 1 1 0 0 0 0
2	0 0 1 0	1 1 0 1 1 0 1
3	0 0 1 1	1 1 1 1 0 0 1
4	0 1 0 0	0 1 1 0 0 1 1
5	0 1 0 1	1 0 1 1 0 1 1
6	0 1 1 0	1 0 1 1 111
7	0 1 1 1	1 1 1 0 0 0 0
8	1 0 0 0	1 1 1 1 1 1 1
9	1 0 0 1	1 1 1 0 0 1 1

f) State any two properties of an ideal operational amplifier. (2Mks)


QUESTION TWO

- a) Define calibration. (1Mks)
- b) Name FOUR types of standards and state where they are found. (4Mks)
- c) Give three merits of an Electronic Instrumentation System. (3Mks)
- d) State the two types of Transducer classification. (2Mks)
- e) (i) With an aid of a schematic and circuit diagram, explain the principle of operation of a Resistive position transducer. (4Mks)
 - (ii) From (i) above, calculate the output voltage of the system given that input voltage is 12V and R1,R2 is 50k,100k respectively. (3Mks)

(iii) A platinum resistance thermometer has a resistance of 100Ω at 25° C. Temperature coefficient of platinum is $0.00392 \Omega / \Omega^{\circ}$ C. Determine resistance at 65° C. (3Mks)

QUESTION THREE

- a) The figure below shows a Digital to Analogue Converter with binary weighted resistors. Calculate the output Voltages of a digital values of 3-bit DAC given that V_R is 5V.
 - (i) 001_2 (3Mks)
 - (ii) 101₂. (3Mks)

- b) With the help of a suitable diagram, explain the operation of Linear Variable Differential Transformer (LVDT) (8Mks)
- c) By use of relevant sketches, illustrate the characteristics of an instrument that exhibits hysteresis defining all the terms involved. (6Mks)

QUESTION FOUR

- a) What is a Transducer as used in Electrical Instrumentation? (2Mks)
- b) Define the TWO types of Electrical transducers and give an example in each. (4Mks)
- c) (i)With the aid of a well labelled diagram, explain the operation of Elastic diaphragm gauge. (10Mks)
 - (ii) Give two merits and demerits of the above instrument respectively. (4Mks) Merits

QUESTION FIVE

- a) Using successive approximation, a 4-bit is used to convert analogue input voltage of V_A of 11 V. What will be its equivalent Digital output? (4Mks)
- b) Using relevant equations and diagram, show that the output of an Instrumentation Amplifier is: (16Mks)