

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

SUPPLEMENTARY/SPECIAL UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FIFTH YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATION ENGINEERING

COURSE CODE:

ECE 513

COURSE TITLE:

NON-LINEAR AND MULTIVARIABLE

CONTROL

DATE: OCTOBER 3RD, 2022

TIME: 3:00PM - 5:00PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY) (30 MARKS)

- 1. Differentiate the following types of nonlinearities using appropriate examples.
 - i. Inherent nonlinearities and intentional nonlinearities
 - ii. Static nonlinearities and dynamic nonlinearities
 - iii. Functional nonlinearities and piece-wise nonlinearities.

[6 Marks]

2. State at least 4 differences between linear and nonlinear systems.

[4 Marks]

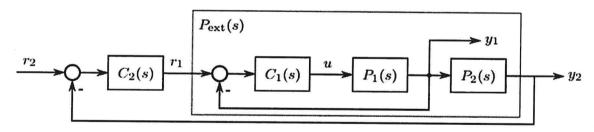
3. A 2nd order system is represented by $\dot{x} = Ax$. Where, $A = \begin{bmatrix} -1 & 1 \\ -2 & -4 \end{bmatrix}$, using Lyapunov theorems determine the stability of the system at the origin.

[4 Marks]

4. Derive the describing function of a simple dead zone

[8 Marks]

5. The response of a system is $y = ax^3 + e^{bx}$. Test whether the system is linear or nonlinear.


[4 Marks]

6. Discuss the terms stability in the large and stability in the small

[4 Marks]

QUESTION TWO (20 MARKS)

1. The control system of a SISO system is given below

Where the plant P_1 is given as $P_1 = \frac{1}{s+1}$ and the inner controller C_1 is given as $C_1(s) = 5$. To design the outer controller C_2 , calculate the transfer function of the extended plant P_{ext} which includes the inner control loop and P_2 , where $P_2 = \frac{1}{5s+1}$.

[4 Marks]

2. A nonlinear second order servo is described by the equation below

$$\ddot{e} + 2\zeta\omega_n\dot{e} + 2\omega_ne + e^2 = 0$$

Where $\zeta = 0.25$, $\omega_n = 1$ rad/sec.

- i. Find all the singularities of the system
- ii. Classify all singularities
- iii. Sketch the phase portrait in the neighborhood of the equilibrium points

[10 Marks]

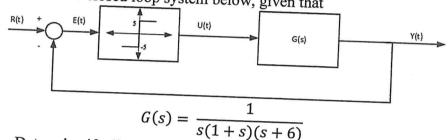
3. What are the desirable characteristics of the nonlinear element while performing a describing function analysis?

[4 Marks]

4. State at least two disadvantages of linearization to solve non-linear systems.

[2 Marks]

QUESTION THREE (20 MARKS)


1. State the Aizerman's and Kalman's conjecture.

[4 Marks]

- 2. Using phase plane diagrams, differentiate between the following:
 - i. Stable node and unstable node
 - Stable focus and unstable focus ii.
 - Saddle point and vortex iii.

[6 Marks]

3. Consider a nonlinear closed loop system below, given that

- Determine if a limit cycle exist i.
- ii. if so determine if the limit cycle is a sustained oscillation
- iii. find the amplitude and frequency of the limit cycle.

[10 Marks]

QUESTION FOUR (20 MARKS)

- 1. Consider a nonlinear system given by $\ddot{y} + \dot{y} + y = 0$. Construct the phase trajectory, using the method of Isoclines. Choose slope as $N = \{-4, -3, -2, -1, 0, 1, 2, 3\}$.
 - [8 Marks]
- 2. Discuss stability with reference to Linear Time Invariant systems

[2 Marks]

- 3. Given a scalar function $V(x) = 4x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + x_2x_3 + 2x_1x_3$ represent it in quadratic form and based on Sylvester's Theorem determine its definiteness.
- 4. State and explain Popov's hyperstability theorem.

[6 Marks]

[4 Marks]

QUESTION FIVE (20 MARKS)

1. An input x(t) and an output y(t) of a nonlinear system are related through a nonlinear differential equation. Find the describing function of the system.

$$y = x^2 \frac{dx}{dt} + 2x$$

[6 Marks]

- 2. Discuss the following terms using appropriate equations and drawings
 - i. Lyapunov stability
 - ii. Asymptotic stability
 - iii. Quasi-asymptotic stability

[6 Marks]

3. For the system described by the equation below, determine the equilibrium point and check for its stability using Lyapunov's stability theorem.

$$\dot{x}_1 = -x_1 - x_2(x_1^2 + x_2^2)$$

$$\dot{x}_2 = x_2 - x_1(x_1^2 + x_2^2)$$

[8 Marks]