

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

SUPPLIMENTARY/SPECIAL EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIFTH YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATION ENGINEERING

COURSE CODE:

ECE 516E

COURSE TITLE:

ANTENNA ENGINEERING & RADIO WAVE

PROPAGATION

DATE: Wednesday, 5th October, 2022 TIME: 0900-1100

INSTRUCTIONS TO CANDIDATES

Question ONE (1) is compulsory Answer Any Other Two (2) questions

TIME: 3 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (a) Describe the following terms as used in antenna engineering:
 - (i) directivity
 - (ii) polarization
 - (iii) reciprocity

(6 marks)

- **(b)** An antenna with a gain of 20 dB is connected to a transmitter using a coaxial cable of 72m long and attenuation of 2.8 dB/100m at 400MHz. If the power from the transmitter is 100W, calculate:
 - (i) Loss in the transmission line
 - (ii) the input power at the antenna;
 - (ii) the effective radiated power.

(8 marks)

- (c) (i) With the aid of a diagram, define the term near-field?
 - (ii) Discuss two applications of near-fields

(6 marks)

- (d) State the limits (minimum and maximum) of the following radio transmission bands
 - (i) FM radio
 - (ii) AM radio
 - (iii) Short Wave radio
 - (iv) C-band
 - (v) Ka band
 - (vi) Ku band

(6 marks)

- (e) A parabolic reflector antenna with a diameter of 5m operates at 18.8 GHz. Calculate:
 - (i) the gain;
 - (ii) the beamwidth

(4 marks)

QUESTION TWO (20 MARKS)

- (a) (i) Discuss two disadvantages of parabolic antennas.
 - (ii) With the aid of a diagram, describe three a parabolic antenna feed systems. State the advantage and disadvantages of each feed system if any.

(8 marks)

- **(b) (i)** What are the advantages of underground communication over communication over the earth's surface?
 - (ii) Describe situations requiring underground and undersea communication

(iii) State and discuss four methods used to communicate with submarines.

(8 marks)

(c) Using a sketch of a communication link, show and explain the sources of all losses of concern when conducting a power budget in the link.

(4 marks)

QUESTION THREE (20 MARKS)

- (a)(i) Derive the expression of the gain of a dipole antenna in dbi.
 - (ii) Calculate the capture (effective) area of a dipole operating at 75 MHz.
- (iii) What is the length of a driven element of a Yagi antenna at 540 MHz?

(8 marks)

- (b) Calculate the effective length of the following antenna at 310 MHz.
 - (i) dipole
 - (ii) folded dipole
 - (iii) bow tie

(6 marks)

- (c) Explain the meaning and significance of the following when used in sky-wave communication.
 - (i) Lowest Usable Frequency
 - (ii) Maximum Usable Frequency
 - (iii) Critical Frequency

(6 marks)

QUESTION FOUR (20 MARKS)

- (a) A 84 metre transmitting antenna has a gain of 12dBd. The receiving antenna has a height of 18 metres and a gain of 3dB. If the transmitter power is 100W at 224MHz, calculate:
 - (i) The maximum transmitting distance
 - (ii) The received power at the maximum transmitting distance.

(8 marks)

- (b) (i) What is the ionosphere and how does it differ from other layers of the atmosphere?
 - (ii) What factors determine whether a radio wave is refracted by the ionosphere or passes through to outer space?
 - (iii) What layer of the ionosphere has the greatest impact on radio communication?

 (6 marks)
- (c) A base station operating at 900 MHz transmits a power of 1 W with a gain of 12 dBd in the direction of a mobile receiver, which has a gain of 0 dBd. The mobile receiver has a sensitivity of -104 dBm. Determine
 - (i) the effective isotropic radiated power
 - (ii) the path loss
 - (iii) The maximum range.

(6 marks)