15

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

SUPPLIMENTARY/SPECIAL EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATION ENGINEERING

COURSE CODE:

ECE 524E

COURSE TITLE:

MICROWAVE ENGINEERING

DATE: Friday, 7th October,2022

TIME: 3-5PM

INSTRUCTIONS TO CANDIDATES

Question ONE (1) is compulsory Answer Any Other TWO (2) questions

TIME: 3 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION 1 (30 MARKS)

- (a) Define following terms with respect to rectangular waveguide and derive expression for both of them.
 - (i) cut-off frequency
 - (ii) Group velocity.
 - (iii) Velocity factor

(6 marks)

- (b)(i) Name four applications of microwaves.
 - (i) Describe briefly the features of microwaves make them more suited to the applications in (b)(i).

(8 marks)

- (c)(i) The cut-off frequency of an air-filed rectangular waveguide is 2.4 GHz for the TE10 mode. What would be the cut-off frequency if the same guide were filled with a lossless nonmagnetic material whose dielectric permittivity is four times that of air?
 - (ii) A strip-line is constructed from a metal strip 1 mm wide (W= 1 mm) separated from a ground plane by an oxide layer whose thickness, D, is 20 m. The relative dielectric constant of the oxide layer is $\epsilon = 8.00$, and its relative permeability is $\mu = 1.00$. What is the velocity of an electromagnetic wave on this line?

(8 marks)

- (d)(i) What are ferrites and give their properties?
 - (ii) Give two examples of ferrite devices in microwave engineering?
 - (iii) Explain the construction and principle of operation of a TRAPATT diode.

(8 marks)

QUESTION 2 (20 MARKS)

(a) Name five passive Waveguide Components and their functions.

(5 marks)

- (b)(i) With the aid of an illustration, define a microstrip and describe its operation.
 - (ii) Describe the operation of a reflex klystron with the aid of a block diagram.
 - (iii) Name three applications of a reflex klystron?

(9 marks)

- (c)(i) Draw and explain the working of directional coupler.
 - (ii) Obtain the S matrix of a three-port directional coupler.

(6 marks)

QUESTION 3 (20 MARKS)

- (a)(i) With the aid of a diagram, describe three types of microwave cavities.
 - (ii) Name and describe two microwave devices using faraday rotation principles
 - (iii) What are power dividers used for in a microwave engineering?
 (9 marks)
- (b)(i) Why is the frequency range between 1GHz 10 GHz more suitable for use by most commercial microwave systems?
 - (ii) With the aid of a block diagram, describe the operation of a microwave oven.
 - (iii) What do you think are the reasons why the 2.45GHz was chosen for use in microwave ovens?

(11 marks)

QUESTION 4 (20 MARKS)

- (a) (i) With the aid of illustrations, discuss two methods of coupling a co-axial transmission line to a waveguide.
- (ii) State the properties of s-matrix?
- (iii) Why is s-matrix used in microwave analysis?

(9 marks)

(b). State the advantages and disadvantages of waveguides compared with Transmission lines.

(4 marks)

- (c)(i) (c)(i) Describe the principle of operation of an IMPATT diode.
 - (ii) An IMPATT diode has the following parameters:

Carrier drift velocity, $V_d=2 \times 10^7 \text{ cm/s}$ Drift-region length, $L=6 \mu \text{m}$ Maximum operating voltage, $V_{\text{max}}=100 \text{ V}$

Maximum operating current, $I_{max} = 200 \text{ mA}$ Efficiency, $\eta = 15\%$

Breakdown voltage, $V_{bd} = 90 \text{ V}$

Calculate (I) the maximum CW output power in watts; (II) the resonant frequency in gigahertz.

(7 marks)