

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF PUBLIC HEALTH, BIOMEDICAL SCIENCE AND TECHNOLOGY

COURSE OUTLINE

Department: Medical Laboratory Science and Technology Program: Medical Biotechnology

Course code: BMB 311

Year of Study: Three Semester One

Course Title: MOLECULAR GENETICS

Academic Year 2018/2019

Date: October 2018 - January 2019

Introduction 1.

This course provides an understanding of molecular genetics.

2. Course Purpose

This course aims at enabling the learner to understand the current trends and controversial issues emanating from in the practice of medical biotechnology.

3. Learning outcomes

By the end of the course the learner will be able to:

- 1. Describe the DNA structure
 - 2. Discuss human genome.
 - 3. State and explain gene expression.
 - Describe genes and the environment 4.

Rationale 4.

There is a rapid technological advancement in medical biotechnology with the advent of many controversial practices. This course serves to equip the learner with knowledge on the contemporary issues in medical biotechnology.

TEACHING-LEARNING STRATEGIES

Overview Lectures Group work and presentations Small-group Tutorial Discussions Individual reading assignments Self-directed Learning 5. Topic Outline

Week	Торіс	Activities
1	DNA: The Genetic Material; Experimental proof and the genetic function of DNA	Lectures, Group work
2	DNA structure: The Double Helix	Lectures, discussions,
		practicals
3	An overview of DNA Replication	Lectures, discussions
4	Genes and Proteins: Inborn errors of metabolism as a cause of Hereditary disease mutant	Lectures, discussions
	genes and defective proteins	
5	CAT ONE	CAT
6	Gene Expression: The Central Dogma; Transcription, Translation, The Genetic code	Group work, lectures,
		discussion.
7	Mutations	Lectures, discussions,
		practicals
8	Protein folding and stability	Lectures, discussions
9	CAT TWO	CAT
10	Genes and Environment	Lectures, discussions
11	Evolution: From genes to genomes, from proteins to proteome. The molecular unity of life, natural	Lectures, discussions
	selection and diversity.	

12	Recombinant DNA Technology	Lectures, discussions
13	Revision	
14	CAT THREE	CAT
15	End of Semester Examinations	Exams
16	End of Semester Examinations	Exams

6. Course Requirements

a) Attendance

Attendance of lectures and other scheduled classes/practical/laboratory sessions is mandatory for all students. Any absence will prohibit the student from taking CAT and examinations.

b) Methods of Assessment (For university wide courses; CATs 40%, Exam 60%)

7. Continuous Assessment Tests (CATs):

Written CAT (At least 3 CATs, one of which has to be a sit-in)	20%
Practical CAT (Can be sit-in or practical marked reports)	20%
Final Examination (Written)	60%
Pass Mark	50%

8. Instructional Resources

- a) Mader, S. S. (2004). Biology. Eighth edition. Boston: MGraw-Hill. Higher
- b) Leland H. & Ricki . (2003). Ethics and Biotechnology
- c) Ringo J. (2004). Fundamental Genetics. Cambridge University Press.

9. Signing and Approval

Prepared by Course Lecturer:							
Name: Dr. Nathan Shaviya	Sign	Date					
Contacts: Email: nshaviya@mmust.ac.ke			Phone: 0723700008				
Issued by Curriculum Coordinator:							
Name: Dr. Mustafa Barasa	Sign	Date					
Approved by COD:							
Name: Fidelis Mambo	Sign	Date					