

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE

BACHELOR OF TECHNOLOGY IN BUILDING CONSTRUCTION

COURSE CODE: BTB 354

COURSE TITLE: CONSTRUCTION COST ESTIMATES AND

ANALYSIS I

DATE: FRIDAY 13TH NOVEMBER 2020 TIME: 9.00 - 11.00 AM

INSTRUCTIONS:

- 1. QUESTION ONE IS COMPULSORY
- 2. Attempt any other TWO questions
- 3. Marks for each question are indicated in the parenthesis.

Examination duration is 2 Hour

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY -40MKS)

- a) Construction cost estimating is the process of forecasting the cost of building a physical structure. Discuss its significance in a construction project (4mks)
- b) State the process of estimating in a construction project (4mks)
- c) Clearly outline the process for formation of a building contract. (4mks)
- d) Describe the following types of estimates
 - i) Design estimates
 - ii) Bid estimates
 - iii) Control estimates

(6mks)

- e) Define the term bills of quantities and state its purpose in construction industry. (4mks)
- f) Explain the following parts of the bills of quantities
 - i) Prime cost

(2mks)

ii) Provisional sums

(2mks)

iii) Preamble clauses

(2mks)

- g) Define the term specifications. Give an account of General and detailed specifications (4mks)
- h) Define construction cost analysis and state factors that determines its process

(4mks)

i) Describe the costs in a construction projects

(4mks)

Attempt ANY 2 Questions from this section (30MKS)

QUESTION TWO

- a) Define the term 'tendering' and state methods used in tendering (4mks)
- b) Describe types of quantity units in a building project giving examples for each quantity unit described. (6mks)
- c) Use the details in the table below to determine the weight of the given reinforcement bars taking the standard length of 12.0 metres. (5mks)
 - i) 20T16
 - ii) 35T8
 - iii) 25T20

Size (mm)	6	8	10	12	14	16	18	20	25	32	40	50
Area (mm²)	28.3	50.3	78.5	113.0	153.96	201.0	254.0	314.0	491.0	804.0	1257.0	1963.0
Weight (kg per m)	0.222	0.395	0.617	0.888	1.209	1.58	2.00	2.47	3.85	6.31	9.86	15.41

Table Q.2

QUESTION THREE

- a) Explain the term valuation in a building contract. Prepare a diagrammatic presentation of valuation, certification and payment to a general contractor from pre-tender to defects repair periods. Assume 9 valuations during the contract periods. (6mks)
- b) One of the projects in the Economic stimulus in Nakuru Constituency is a model school budgeted to cost 30 million when complete. The contract period is estimated as 15 months, excluding defects liability period of six (6) months and final payment 2 months after the defects liability period. If the valuations per respective months are as tabulated below and retention percentage is 10%, draw out the valuation certificate for the whole 20 months period. (9mks)

VALUATION SCHEDULE

MONTH	AMOUNT (KSHS)
1	1,500,000
2	1,000,000
3	1,500,000
4	1,300,000
5	1,700,000
6	1,200,000
7	1,800,000
8	2,000,000
9	1,900,000
10	3,100,000
11	1,800,000
12	2,200,000
13	3,500,000
14	3,000,000
15	2,500,000
TOTAL	30,000,000

Table Q.3

QUESTION FOUR

Determine the material quantities and the cost of a substructure for Mr. Obungongo's house measuring 9.0m x 7.2m internally. (15mks)

Specifications

- The foundation is concrete strip 600m x 200mm (1:3:6)
- Foundation wall is dressed quarry stones 250 x 300mm 1.0m deep from the stripped level.
- The hardcore is a well compacted layer of rough natural stones 300mm thick.

- The blinding of 50mm murram.
- DPM is 1000g polythene paper.
- Over site concrete is 150mm thick concrete mix (1:2:4)

Take

- 1. Ballast (1600kg/m^3) @ Kshs.2, 000/= per tone.
- 2. Sand (1450kg/m^3) @ Kshs.800/= per tone
- 3. Hardcore (1500kg/m^3) @ Kshs.600/= per tone.
- 4. Murram (1350kg/m^3) @ Kshs.500/= per tone.
- 5. Cement (37 litres/bag) @ Kshs.800/= per bag
- 6. Water (litres) @ Kshs.1.0 per litre.
- 7. Dressed stones (meters) Kshs.30 per meter
- 8. Excavation
 - i) Stripping (150mm thick), 1 casual/m³ @ Kshs.100/= per m³
 - ii) Trench (1 casual/ m^3) @ Kshs.150/= per m^3
- 9. Water to cement ratio (1:2.5)
- 10. 30% for wastage, spillage and shrinkage
- 11. Mortar (1:4) taking 25% of the foundation wall
- 12. Construction takes 18 days
 - i) 6 casual @ Kshs.300/= per head per day.
 - ii) 3 masons @ Kshs.500 per head per day