211

(1:

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY REGULAR EXAMINATIONS 2022/2023 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: CS

CSE 211

COURSE TITLE:

THEORY OF STRUCTURES I

DATE: 6TH DECEMBER 2022

TIME: 8 - 10 A.M.

INSTRUCTIONS:

- 1. This paper contains **FIVE** questions
- 2. Answer QUESTION ONE and any other TWO Questions
- 3. Marks for each question are indicated in the parenthesis.
- 4. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages, Please Turn Over.

QUESTION ONE (30 MARKS)

- a) As an upcoming structural engineer, you are required to fully understand structural analysis as a fundamental step in structural designs. Describe structural analysis using illustrations of a typical truss. (5Mks)
- b) Name and describe any FIVE (5) basic structural elements.

(10Mks)

- c) With illustrations, discuss the relationship between applied force and the resulting shear ()[force and bending moment. (5Mks)
- d) For the beam shown in Figure Q1, draw the shear force and bending moment diagrams. (10Mks)

Figure Q1

QUESTION TWO (20 Marks)

a) State the assumptions used in the analysis of trusses.

(3Mks)

b) State Castigliano's first theorem as used in analysis of structures.

(2Mks)

c) A pin-jointed truss *ABCD* is subjected to a vertical of 15kN at joint *B* as shown in Figure Q2. Determine the vertical displacement at joint *B*. All members have constant cross-sectional area, $A = 6 \times 10^{-4} \text{m}^2$ and Young's Modulus, $E = 210 \times 10^{9} \text{N/m}^2$. (15Mks)

(S).

c).

Figure Q 2

QUESTION THREE (20 Marks)

- a) Given a three-hinged parabolic arch of span L and central rise of h, determine the equation of curve for structural analysis. (6Mks)
- b) Show that for a three-hinged parabolic arch subjected to a uniformly distributed load throughout its span is not affected by bending moment. (14Mks)

111

QUESTION FOUR (20 Marks)

Consider a cable suspended from support A to support B spanning 40 m apart and loaded at points C, D and E as shown in Figure Q4. For the analysis of the cable, carryout the following:

- (a) Calculate the reactions at the supports A and B.
- b) Calculate the sag at points D and E.
- c) Calculate the total length of the cable.
- d) Calculate the cable tension at supports *A* and *B*.

(5Mks)

a: set

1787

Figure Q4

QUESTION FIVE (20 Marks)

For the beam-column shown in Figure Q5, carryout the following:

- Determine the reactions at the supports.
- Draw the shear force, axial force and bending moment diagrams.

(6Mks)

====END OF PAPER====