

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE MEDICAL BIOTECHNOLOGY

MAIN EXAM

COURSE CODE: BMB 322

COURSE TITLE: MOLECULAR ONCOLOGY

DATE: 7TH **DECEMBER 2020 TIME:** 2.00 -4.00 PM

Instructions

Time 2 hours

Answer all questions

Section A comprise of 20 MCQs 1 mark each

Section B comprise 8 short answer questions: a total of 40 marks

Section C comprises of 3 long essay questions: 20 marks each

SECTION A: multiple choice questions (MCQs)

- 1. p53 is a tumour suppressor protein that has an important role during which part of the cell cycle:
 - a. G1
 - b. G2
 - c. S
 - d. M
- 2. Migration of tumor cells from primary site forming secondary tumour foci is known as:
 - a. Metastasis
 - b. Invasion
 - c. Diapedesis
 - d. Cancer
- 3. Which is NOT a typical mechanism by which a proto-oncogene is converted to an oncogene?
 - a. Complete deletion of the proto-oncogene
 - b. A point mutation in the proto-oncogene
 - c. Amplification of the proto-oncogene
 - d. A chromosomal translocation resulting in the up-regulation of the proto-oncogene
- 4. Proto-oncogenes are:
 - a. normal cellular genes which promote cellular growth
 - b. normal cellular genes which inhibit cellular growth
 - c. mutated genes
 - d. genes that promote apoptosis
- 5. All of the following mechanisms are involved in the conversion of proto-oncogenes to oncogenes except:
 - a. Point mutations
 - b. Chromosomal Translocation
 - c. Gene amplification
 - d. Loss of function mutations
- 6. Which of the following is a tumour suppressor gene?
 - a. C-myc
 - b. p53
 - c. Ras
 - d. c-erbB
- 7. Up to 80% of Burkits lympomas are associated with which of the following c-myc gene translocations:
 - a. t (8, 14)
 - b. t (8, 22)
 - c. t (2, 8)
 - d. t (14, 8)
- 8. Which of the following tumors exhibit 10-20 fold amplification of the L-myc gene?
 - a. Adrenal carcinoma
 - b. Small cell lung carcinoma
 - c. Burkits lymphoma
 - d. Chronic myelogenous leukaemia

- 9. Which of the following tumors exhibit up to 5-1000 fold amplification of the N-myc gene?
 - a. Adrenal carcinoma
 - b. Small cell lung carcinoma
 - c. Epidermoid carcinoma
 - d. Neuroblastoma
- 10. Which of the following exhibit a change of glutamine to lysine at amino acid number 61 of the N-ras protein?
 - a. Lung carcinoma
 - b. Adrenal carcinoma
 - c. Retinoblastoma
 - d. Colon cancer
- 11. Which of the following exhibit a change of glycine (gly) to cysteine (Cys) at amino acid number 12 of the K-ras protein?
 - a. Lung carcinoma
 - b. Adrenal carcinoma
 - c. Retinoblastoma
 - d. Bladder carcinoma
- 12. Conversion, or activation, of a proto-oncogene into an oncogene generally involves
 - a. Gain-of-function mutations
 - b. Loss of function mutations
 - c. Tumorigenesis
 - d. Metastasis
- 13. Which of the following factors is NOT antiapoptotic?
 - a. Bcl-2
 - b. Bcl-xL
 - c. Mcl-1
 - d. Bax
- 14. Which of the following molecules is not an immune checkpoint target for immunotherapy?
 - a. Cytotoxic T-lymphocyte antigen-4 (CTLA-4),
 - b. Programmed cell death-1 (PD-1)
 - c. Programmed cell death ligand-1 (PD-L1)
 - d. Caspase 3
- 15. Inherited mutations in BRCA1 or BRCA2 significantly increase risk of:
 - a. Colon cancer
 - b. Lung cancer
 - c. Liver cancer
 - d. Breast cancer
- 16. Microsatellite instability is the production of new alleles from:
 - a. Unrepaired replication errors
 - b. Pseudogenes
 - c. Proto-oncogenes
 - d. Dna repair genes
- 17. In microsatellite analysis of tumor tissues, the unstable microsatellite loci appear in the gel as:
 - a. Point mutations

- b. Insertions
- c. Translocations
- d. Extra products in tumor tissue compared to normal tissue
- 18. Which of the following molecules does **NOT** play a pro-angiogenic role in tumor neo-angiogenesis?
 - a. Vascular endothelial growth factors (VEGF)
 - b. Fibroblast growth factor-2 (FGF2)
 - c. The platelet derived growth factor (PDGF)
 - d. Thrombospondins (TSP)
- 19. PTEN is mutated in most cancers; what is its normal role in PI3K/Akt/mTOR signalling pathway
 - a. Catalyse the dephosphorylation of PI3K
 - b. Conversion of PIP3 to PIP2
 - c. Phosphorylates Akt
 - d. Dephosphorylates Akt
- 20. Microsatellite instability in tumors is detected by:
 - a. comparing PCR amplicons of the microsatellite loci
 - b. Immune histochemistry
 - c. RNA sequencing
 - d. DNA sequencing

SECTION B: SAQs: Answer all (40 marks)

- 1. Describe two mechanisms that lead to loss of heterozygosity (LOH) of tumor suppressor genes (8marks)
- 2. Describe three mechanisms that convert proto-oncogenes to oncogenes (6 marks)
- 3. Using colon cancer as an example, illustrate the role of proto-oncogene and tumour suppressor gene mutations in initiation and progression of carcinomas (10 marks)
- **4.** Describe the intrinsic apopototic pathway

(8 marks)

5 Explain FOUR main molecular mechanisms of cancer chemotherapy resistance

(8marks)

SECTION C: LAQs: Answer any Three (60 marks)

- 1. Discuss the steps and mechanisms in tumor metastasis
- **(20 marks)**
- 2. Describe in detail the steps involved in second generation cancer Genome sequencing techniques (20 marks)
- 3. Outline the PI3K/Akt pathway and illustrate specific steps that are abnormal in tumors (20 marks)
- 4. Describe the molecular mechanisms involved in tumor angiogenesis (20 marks)