

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIFTH YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATION ENGINEERING

COURSE CODE:

ECE 514E

COURSE TITLE:

RADAR & SATELLITE ENGINEERING

DATE: 14TH DECEMBER, 2022 TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (a)(i) Explain the Kepler's laws of planetary motion and how they relate to artificial satellites.
 - (ii) The earth has an orbital period of 365 days and its mean distance from the Sun is 1.495x10⁸ km. The planet Pluto's mean distance from the Sun is 5.896x10⁹ km. Using Kepler's third law, calculate Pluto's orbital period in Earth days.
 - (ii) Discuss three factors that make practical satellite motion to deviate from predictions based on Kepler's laws.

(7 marks)

- **(b)** A radar has a pulse width of 1 microsecond and a pulse repetition frequency of 1800 Hz. Calculate the following.
 - (i) Maximum unambiguous range
 - (ii) Range resolution.

(4 marks)

- (c)(i) What is a sidereal day? How long is it?
 - (ii) What velocity is needed to launch a satellite into a circular orbit at an altitude of 800 km above the surface of the Earth? Assume the radius of the earth is 6370km and the gravitational coefficient, g₀ = 398600.5km³/s².

(4 marks)

(d) Two satellites, A and B, are moving in an elliptical eccentric orbit but with different apogee distances. Satellite A is rotating with an orbital period of 5 hours and semimajor axis of 2,000Kms. Satellite B has an orbital period of 2 hours 50 minutes. Determine the length of the semimajor axis of satellite B.

(6 marks)

- (e)(i) Derive the free-space radar range equation for a monostatic radar system.
 - (i) Define a weather radar scan angle.
 - (iii) Describe THREE moments of a weather radar image.

(9 marks)

QUESTION TWO (20 MARKS)

- (a)(i) List the advantages and disadvantage of using the C-band in satellite communication.
 - (ii) Name and describe THREE broad categories of services provided by Global Positioning System (GPS).

(7 marks)

- **(b) (i)** Discuss the various features of a runaway that can make a pilot fail to land a plane successfully?
 - (ii) With the aid of drawings, name and describe the various components of an instrument landing system (ILS).
 - (iii) Name and discuss the radar systems which performs the functions of ILS at large international airports.

(8 marks)

(c) Calculate the power received from a satellite located 35,800km from the surface of the earth which is operating at a frequency of 12GHz with Effective (Equivalent) Isotropic Radiated Power (EIRP) of 21dBW. Assume the gain of the receive antenna gain is 50.5 dB.

(5 marks)

QUESTION 3 (20 MARKS)

- (a)(i) With the aid of a diagram, describe operation of a pulse radar system for remote sensing.
 - (ii) Define the following terms which are used in remote sensing radar systems:
 - (I) Synthetic Aperture Radar (SAR)
 - (II) Depression angle

(7 marks)

- (b)(i) With the aid of block diagrams, name and discuss four satellite subsystems.
 - (ii) With the aid of a block diagram, describe the key elements in a Ku-band satellite transponder.

(8 marks)

- (c) A satellite orbit has an apogee of 28,300 kms and eccentricity of 0.3. Assuming that the geocentric gravitational constant is $\mu = 39.8 \times 10^{13} \, Nm^2/Kg$, determine the following.
 - (i) the perigee distance;
 - (ii) The orbital period of the satellite.

(5 marks)

QUESTION FOUR (20 MARKS)

- **4(a)** Suppose you are to design a satellite with apogee radius of 30,000 km occurring directly above the North pole. Answer the following questions assuming $G = 6.672 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ and the mass of the earth is $M = 5.974 \times 10^{24} \text{ kg}$
 - (i) Given that the orbit must clear the earth's radius plus 500 km at the perigee, what is the shortest possible period for the satellite?
 - (ii) Given the conditions in part (i), what is the maximum eccentricity for this orbit?
 - (iii) When the satellite is at apogee, what is the lowest possible latitude an earth station could have and still theoretically receive a radio transmission?

(6 marks)

- (b)(i) What is a tracking radar? Briefly describe its functions.
 - (ii) Derive the expression for the error signal in a conical tracking radar system.
 - (iii) With the aid of a block diagram, describe `operation of the conical tracking radar system.

(8 marks)

- (c) Assume a Low Earth Orbit satellite is at 1,000 km from the sub-satellite point on the earth. The satellite is supposed to scan from 20° south-east to 40° northeast. If the gravitational coefficient is $g_o = 3.986 \times 10^5 \text{ km}^2/\text{s}^2$, determine
 - (i) The angular velocity
 - (ii) The orbital period
 - (iii) The number of satellites required to maintain coverage for 24 hours.

(6 marks)