, Au

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE CODE:

DEE 094

COURSE TITLE:

ADVANCED COMMUNICATION

SYSTEMS

DATE: Tuesday 11th April, 2023

TIME: 2.00 P.m – 4.00 P.m

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS.
QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question One

- a) Explain what you understand by the term electromagnetic spectrum (2 marks)
- b) With aid of sketches describe how a cavity klystron operates (8 marks)
- c) State the FOUR main parts of the fiber optic cable (4 marks)
- d) Light travels from air into an optical fiber with a refractive index of 1.45. if the incident angle is 25°
 - i) Calculate the angle of refraction inside the cable (4 marks)
 - ii) Sketch path of the light as it changes media (3 marks)
- e) Differentiate between electromagnetic waveguides and acoustic waveguides citing examples in each case (4marks)
- f) List FIVE advantages of waveguides over transmission lines (5 marks)

Question Two

- a) What is a microwave integrated circuit? (2 marks)
- b) State TWO applications of travelling wave tube (2 marks)
- c) A 5GHz receiver has the following gains and noise temperatures G_{rf} = 23 dB, T_{in} = 25K, T_{m} = 500K, T_{if} = 100K and T_{rf} = 50K
 - i) Calculate the system noise temperature when the mixer has a gain of 0dB (2 marks)
 - ii) Determine the system noise temperature when the mixer has a 10dB loss (2 marks)
 - iii) How can the noise temperature of the receiver be minimized when the mixer has a loss of 10dB? (2 marks)
- d) Calculate the maximum range of Radar for the following specifications -

Peak power transmitted by the Radar, Pt = 300KW

Gain of transmitting Antenna, G = 3000

Effective aperture of the receiving Antenna, Ae=4m²

Radar cross section of the target, $\sigma=25\text{m}^2$

Power of minimum detectable signal, Smin=10⁻¹⁰W (4marks)

e) The interior of a 0.6m by 0.2m waveguide is completely filled with a dielectric of Er = 5. Calculate the velocity of propagation, cut off frequency and wavelength if its operating in TE11 mode (6marks)

Question Three

- a) Define a magnetron (1 mark)
- b) State and expound on THREE types of magnetrons (3 marks)
- c) A Travelling Wave Tube operates at 1 GHz when a dc voltage of 12V and dc current of 500mAis applied at the cathode. Calculate its gain in dB given that the helix has an impedance of 1 K Ω . (take electron velocity to be 0.593 x 10^6 m/s) (6 marks)
- d) With illustrations describe how a reflex klystron operates (8 marks)
- e) State TWO applications of magnetrons (2 marks)

Question Four

- a) State TWO types of radar and with the aid of block diagrams explain their functionality (8 marks)
- b) Briefly explain how the idea of total internal reflection is achieved in fiber optics (4 marks)
- c) A ray of light incident in water strikes the water-air interface with an incident angle of 10°. If the refractive index of water is 1.3
 - i) Calculate the angle of refraction (3 marks)
 - ii) What should be the angle of incidence for an angle of refraction not to exceed 45°? (3 marks)
 - iii) Compute the critical angle (2 marks)

Question Five

- a) Differentiate geostationary and geosynchronous orbits (4 marks)
- b) A satellite downlink at 15GHz operates with a transmit power of 20W and an antenna gain of 50dB. Calculate EIRP in dBM (5marks)
- c) State Three advantages of satellite communication over terrestrial networks (3marks)
- d) Prove that for a real antenna, the received power in watts is given by:

$$P_r = \frac{P_t G_t A_e}{4\pi R^2}$$
 (8 marks)