

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE

OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE:

BCS 211

COURSE TITLE:

DIGITAL ELECTRONICS

DATE: 05/12/2022

TIME: 08:00-10:00AM

INSTRUCTIONS TO CANDIDATES

• Answer Questions ONE and ANY OTHER TWO.

TIME: 2 Hours

QUESTION ONE 30 MARKS (COMPULSORY)

Find the hex sum of $(93)_{16} + (DE)_{16}$.

4 Marks

Perform 2's complement subtraction of $(7)_{10} - (11)_{10}$.

3 Marks

Evaluate $x = \overline{A} \cdot B + C(\overline{A} \cdot D)$ using the convention A = True and B = False.

4 Marks

Simplify the Boolean expression F = C(B + C)(A + B + C).

6 Marks

e. Simplify the following expression into sum of products using Karnaugh map

$$F(A,B,C,D) = \sum (1,3,4,5,6,7,9,12,13)$$

6 Marks

f. Draw the circuit diagram of a Master-slave J-K flip-flop using NAND gates. What is race around condition? How is it eliminated in a Master-slave J-K flip-flop?

7 Marks

QUESTION TWO 20 MARKS

a.

Determine the binary numbers represented by the following decimal numbers.

- b. (i) 25.5
- (ii) 10.625
- (iiii) 0.6875

6 Marks

Simplify the given expression to its Sum of Products (SOP) form. Draw the logic circuit for the simplified SOP function $Y = (A + B)(A + \overline{AB})C + \overline{A}(B + \overline{C}) + \overline{AB} + ABC$ (5)

Prove the following Boolean identities.

(i)
$$XY + YZ + \overline{Y}Z = XY + Z$$

d (ii)
$$A.B + \overline{A.B} + \overline{A.B} = \overline{A} + B$$

4 Marks

Prove the following equations using the Boolean algebraic theorems:

(i)
$$A + \overline{A} \cdot B + A \cdot \overline{B} = A + B$$

(ii)
$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC = AB + BC + AC$$

5 Marks

QUESTION THREE 20 MARKS

a.

A combinational circuit has 3 inputs A, B, C and output F. F is true for following input combinations

A is False, B is True

A is False, C is True

A, B, C are False

A, B, C are True

- (i) Write the Truth table for F. Use the convention True=1 and False=0.
- (ii) Write the simplified expression for F in SOP form.
- (iii) Write the simplified expression for F in POS form.
- (iv) Draw logic circuit using minimum number of 2-input NAND gates.

6 Marks

b.

Prove the following Boolean identities using the laws of Boolean algebra:

(i)
$$(A+B)(A+C) = A+BC$$

(ii)
$$ABC + A\overline{B}C + AB\overline{C} = A(B+C)$$

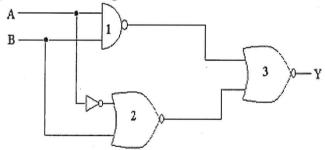
4 Marks

c. The Karnaugh map for a SOP function is given below in Fig.1. Determine the simplified SOP Boolean expression.5 Marks

\	CD —	01	11	10
AB ₀₀	1	1		1
01		1		
* 11				
10	1	_1		1
		Fig	1	

d

e. What are universal gates? Construct a logic circuit using NAND gates only for the expression x = A. (B + C). 5 Marks


QUESTION FOUR 20 MARKS

a. What is a half-adder? Explain a half-adder with the help of truth-table and logic diagram.

5 Marks

b. Find the Boolean expression for the logic circuit shown below.

3 Marks

C

d. With relevant logic diagram and truth table explain the working of a two input EX-OR gate.

6 Marks

e. With the help of clocked JK flip flops and waveforms, explain the working of a three bit binary ripple counter. Write truth table for clock transitions.

6 Marks

QUESTION FIVE 20 MARKS

a. Distinguish between ROM, PROM, EPROM, EEPROM

6 Marks

b. State and prove Demorgan's laws.

4 Marks

c. Simplify the expressions using Boolean postulates

6 Marks

(i)
$$XY + XYZ + X(Y + XY)$$

(ii)
$$Y = (A + B)(A + C)(B + C)$$

(iii)
$$XY + XZ + XYZ (XY + Z)$$

d. Write the expression for Boolean function F (A, B, C) = \sum m (1,4,5,6,7) in standard POS form.