

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS
2022/2023 ACADEMIC YEAR
FIRST SEMESTER EXAMINATIONS
FOR THE DEGREE

IN

COMPUTER SCIENCE

COURSE CODE: BCS 472

COURSE TITLE: MACHINE LEARNING

DATE:

07/12/2022

TIME: 3:00-5:00pm

INSTRUCTIONS TO CANDIDATES

Answer Question ONE (1) and any other TWO

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 2 Printed Pages. Please Turn Over.
Page 1 of 4

{30 MARKS}

QUESTION 1

- a) Explain Machine Learning, and hence Give an example of learning machines. (3 Marks)
- b) In the context of application of statistical tools and datasets in machine learning, explain the following. (6 Marks)
 - i. Generalization
 - ii. Underfitting
 - iii. Overfitting
- c) Make use of a "hypothetical dataset "to explain supervised learning.

(5 Marks)

- d) Make use of a "hypothetical dataset "to explain unsupervised learning.
- (3 Marks)
- e) In some machine learning problems, we perform regression. Explain the following within the applied context. (8 Marks)
 - i. Best Fit Line
 - ii. Hypothesis
 - iii. Mean Squared Error
 - iv. Cost function
- f) Explain the Confusion Matrix with Respect to Machine Learning Algorithms. (3 Marks)
- g) Discuss any three known Applications of Supervised Machine Learning in Modern Businesses.

(3 Marks)

QUESTION 2

a) Explain regression and hence describe any two types of regression that can be applied in machine learning.
 (10 Marks)

b) Describe training and test sets, use a valid example.

(6 Marks)

c) With reference to question (b) above, explain "cross-validation".

(2 Marks)

d) Describe "model selection" as applied in machine learning problems.

(2 Marks)

QUESTION 3

a) Discuss neuron networks, and hence outline the area of suitability for three common types.

(4 Marks)

b) Explain the K Mean Algorithm.

(6 Marks)

c) Explain the K Nearest Neighbor Algorithm.

(4 Marks)

d) Use any **three** distinct points to distinguish supervised learning from unsupervised learning.

(6 Marks)

QUESTION 4

Kisumu county government wants to use the COVID-19 test positivity rate (i.e. the proportion of tests with a positive result) to estimate the number of COVID-19 infections in the community. In the data collected, the positivity rate is labelled with one of three levels of positivity (+, ++ and +++) and the number of people infected are categorised as high (H), medium (M) or low (L).

timestep	1	2	3	4	5	6	7
infections	L	M	Н	Н	Н	M	M
positivity	+	++	++	++	+++	++	++

- a) Define and estimate the components of an appropriate HMM for this application, without smoothing.
 (4 Marks)
- b) What assumptions are implicit with the use of an HMM? Are they appropriate in the context of this application? (4 Marks)

Machine Learning

c) You are in time-step 7 and you now observe the following positivity rates, but you do not know the number of infections:

timestep	8	9	10
positivity	+++	++	++

- i. Predict the number of infections for each time-step using the Viterbi algorithm, showing the equations and calculations you make. (8 Marks)
- d) Briefly describe any two shortcomings of the HMM developed for predicting the number of infections. (4 Marks)

QUESTION 5

a) Explain reinforcement learning

(2 Marks)

b) Describe four characteristics of reinforcement learning problems.

(8 Marks)

- c) A Naïve Bayes classifier has to decide whether the document "London Paris" is news about the United Kingdom (class U) or news about Spain (class S).
 - i. Estimate the probabilities that are relevant for this decision from the following document collection using maximum Likelihood estimation. (Answer with fractions)

(3 Marks)

	document	class
1	London Paris	U
2	Madrid London	S
3	London Madrid	U
4	Madrid Paris	S

ii. Based on the probabilities, which class does the classifier predict? Explain your answer. Show your understanding of the Naïve Bayes classification Rule.

(4 Marks)

iii. Explain why the implementations of a Naïve Bayes classifier often use log probabilities. (3 Marks)

End of Exam