

(The University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST) MAIN

CAMPUS

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE

OF

BACHELOR OF SCIENCE (SIK)

COURSE CODE:

BIK 111

COURSE TITLE:

MATHEMATICS FOR INTELLIGENCE

SYSTEMS

DATE: 15/12/2022

TIME: 8.00AM - 10.00AM

INSTRUCTIONS TO CANDIDATES

Answer question ONE (compulsory) and any TWO questions

This Paper Consists of 4 Printed Pages. Please Turn Over

QUESTION ONE (30MKS)

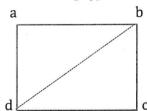
- a) Show that the $\lim_{n\to\infty} \frac{n^2+2}{2n^2-1} = \frac{1}{2}$. (4 Marks)
- b) Evaluate the derivative of $f(x) = \sin x$ using first principles. (5 Marks)
- c) Assume that in a university with 1000 students, 200 students are taking a course in mathematics, 300 are taking a course in physics, and 50 students are taking both. How many students are taking at least one of those courses? (5 Marks)
- d) Define the following terms as used in graph theory
 - i) Simple graph
 - ii) Weighted graph
 - iii) Hamilton circuit

(6 Marks)

e) Let P and Q be propositions. Construct a truth table for the proposition $(P \land Q) \Rightarrow (P \lor Q)$. State and explain whether the statement is a tautology or a contradiction.

(5 Marks)

f) Find $\int \log x \ dx$.


(5 Marks)

QUESTION TWO (20MKS)

- a) Write the negation of the following quantified statements
 - i) $\neg [(\forall x)P(x)$
 - ii) $\neg [All \ birds \ can \ fly]$

(4 Marks)

b) Find the adjacency matrix $A = [a_{ij}]$ of the graph below (4 Marks)

c) Draw all trees with exactly six vertices

(6 Marks)

d) Use the Midpoint Rule with n=5 to approximate $\int_1^2 \frac{1}{x} dx$.

(6 Marks)

QUESTION THREE (20MKS)

a) Determine

 $\int_0^3 (x^3 - 6x) \, dx$

(6 Marks)

- b) Define the following terms
 - i) Continuous function
 - ii) Derivative

(4 Marks)

c) Let $f(x) = x^x$ for x > 0 and let f(0) = 1. Show that f(x) is continuous at x = 1.

(6 Marks)

d) Compute the limit

(4 Marks)

$$\lim_{x\to 2} \frac{3x-5}{x^2-1}$$

QUESTION FOUR (20MKS)

a) Given $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to B: $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$

i) Determine the matrix of the relation. (4 Marks)

ii) Draw the arrow diagram of R. (3 Marks)

iii) Find the inverse relation R-1 of R. (3 Marks)

(2 Marks) Determine the domain and range of R.

b) Given $A = [\{a, b\}, \{c\}, \{d, e, f\}].$

i) List the elements of *A*. (2 Marks)

ii) Find n(A). (2 Marks)

iii) Find the power set of A. (4 Marks)

QUESTION FIVE (20MKS)

- a) Each student in Liberal Arts at some University has a mathematics requirement *A* and a science requirement *B*. A poll of 140 freshmen shows that: 60 completed *A*, 45 completed *B*, 20 completed both *A* and *B*. Use a Venn diagram to find the number of students who have completed:
 - i) At least one of A and B;
 - ii) exactly one of A or B;
 - iii) neither A nor B. (9 Marks)
- b) Consider functions $f: A \to B$ and $g: B \to C$. Prove that if f and g are one-to-one, then the composition function $g \circ f$ is one-to-one. (4 Marks)
- c) Draw a picture of the weighted graph G which is maintained in memory by the following vertex array DATA and weight matrix W: (7 Marks)

$$DATA: X, Y, S, T; W = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 5 & 0 & 1 & 7 \\ 2 & 0 & 0 & 4 \end{pmatrix}$$