15, 15

& T

1. 119

B I I H I KENSUMENTED A BRANCOM

137 F15

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN BUILDING CONSTRUTION

COURSE CODE:

BTB 412

COURSE TITLE:

STRUCTURAL DESIGN III

DATE: 27TH APRIL 2023

TIME: 8 - 10 A.M

INSTRUCTIONS:

Day . .

150

MINISTERNA S CAUSE DESIGNA S

- 1. This paper contains FOUR questions
- 2. Question ONE (1) is Compulsory
- 3. Attempt a total of THREE questions in this booklet.
- 4. Marks for each question are indicated in the parenthesis.
- 5. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

Pitan

CIRCLE

178 363 Chur.

CHIESE ALE SEP WYALLIE Chicis. Ext 251

明 神道。

Question 1

COMPULSORY

(20 marks)

(a) Considering the floor plan shown in Figure Q1, with the one-way and twoway Spanning slabs indicated, determine the type and magnitude of the loading on each of the supporting beams. The slabs are assumed to be first carrying a uniformly distributed design load of 5 kN/m². (10 Marks) GAE CIE

Figure, Q1

- Rib b) Explain factors to consider in choosing a bridge type. (4Marks)
- c) Distinguish between Convetional design and Engineered design. Explain Device factors that necessitates engineered Design. (6 Marks) Chi re.

Ouestion 2

F1 4 42

Slaith

Rib Wie

Cit wille

(20 marks)

Affloor system consisting of a solid in-situ reinforced concrete slab cast integrally with the support beams is supported over four spans of 6.0 m as shown in Figure Q2. using the design data provided; Exp 051.

- a) design suitable slab reinforcement, (10 Marks)
- b) Check the suitability of the slab with respect to shear and deflection, (5 marks)
- c) Prepare a sketch indicating all reinforcement; use the simplified rules indicated in BS8110: Part 1: Clause 3.12.10 (5Marks).

Design Data:

Characteristic dead load (excluding self-weight + finishes)

Characteristic dead load due to finishes only

Characteristic imposed load

Concrete grade

Characteristic strength of reinforcing steel

Exposure condition = severe

Fire resistance = 1hr minimum

Slab thickness hf = 300 mm

Rib width bw = 300 mm

 $a_k = 12.0 \text{ kN/m}^2$

 $gk = 1.0 \text{ kN/m}^2$

 $q_k = 5.0 \text{ kN/m}^2$

 $fcu = 40 \text{ N/mm}^2$

 $f_v = 460 \text{ N/mm}^2$

101 707

1.19

ET EUR

NOTE

SO HILL

. Fol & 657

57 111

HAP ()

ing The

50 111

53 741

Overall depth h = 600 mmSpan of main beams L = 6.0 mCentres of main beams = 4.0 m

Figure Q2

Question 3 (20 marks)

A pad foundation is required to support a single square column transferring an axial load only. Using the data provided:

- a) Determine a suitable base size, (3 marks)
- b) Check the base with respect to:
 - i. bending and Design suitable reinforcements (7 marks)
 - ii. direct shear (5 Marks)
 - iii. punching shear (5 marks)

Design Data:

Characteristic dead load on column 800 kN

Characteristic imposed load on column 300 kN

Characteristic concrete strength $f_{cu} = 40 \text{ N/mm}^2$

Characteristic of reinforcement $f_y = 460 \text{ N/mm}^2$

Net permissible ground bearing pressure $p_g = 200 \text{ kN/m}^2$

Column dimensions 375 mm × 375 mm

Exposure condition severe

a und in that in a

Question 4 (20 marks)

The cantilever retaining wall shown Fig Q4 is backfilled with granular material having a unit weight, ρ , of 19 kNm⁻³ and an internal angle of friction, ϕ , of 27°. Assuming that the allowable bearing pressure of the soil is 120 kNm⁻², the coefficient of friction is 0.4 and the unit weight of reinforced concrete is 24 kNm⁻³

- a) Determine the factors of safety against sliding and overturning. (6Marks)
- b) Calculate ground bearing pressures. (4 Marks)
- c) Design the wall and base reinforcement assuming $f_{cu} = 30 \text{ kNm}-2$, $f_y = 460 \text{ kNm}^{-2}$ and the cover to reinforcement in the wall and base are, respectively, 35 mm and 50 mm. **(10 Marks)**

-- end -