

(University of Choice)

# MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

# UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

## FOURTH YEAR SECOND SEMESTER EXAMINATIONS

# FOR THE DEGREE OF BACHELOR OF TECHNOLOGY EDUCATION IN ELECTRICAL AND ELECTRONICS ENGINEERING

**COURSE CODE:** 

**TEE 422** 

**COURSE TITLE:** 

**CONTROL SYSTEMS** 

DATE: 14TH APRIL 2023

TIME: 12:00 NOON - 2:00 PM

#### **INSTRUCTIONS TO CANDIDATES**

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

### **QUESTION ONE (COMPULSORY) (30 MARKS)**

- a. For each of the following control systems, state with a reason whether it an open loop or closed loop system.
  - a) A bread toaster
  - b) A man walking on the road
  - c) A photocell -controlled street lighting system

[6 Marks]

b. State three essential features of a servo mechanism.

[3 marks]

- c. Define the following controller
  - a) Proportional controller
  - b) Integral controller
  - c) Derivative controller

[3 marks]

d. Discuss the impact of introducing integral controller in series with the system for a unity negative feed system.

[2 marks]

e. state four requirements of a good control system

[4 marks]

f. State three types of compensating network.

[3 marks]

g. Mention four importance of servo mechanism

[4 marks]



[5 marks]

### **QUESTION TWO**

a. Find the transfer function, X(s)/F(s), for the system



[5 Marks]

b. Find the transfer function relating the capacitor voltage  $V_c(s)$  to the input voltage V(s)



[5 MARKS]

c. Draw the root-locus of the feedback system whose open-loop transfer functions are given by.

$$G(s)H(s) = \frac{k}{s(s+1)(s+2)(s+3)}$$

[10 Marks]

#### **QUESTION THREE**

a. State the Routh-Hurwitz stability criterion.

[2 marks]

b. State two necessary conditions for a system to be stable with reference to Routh's stability criterion

[2 marks]

c. Find the stability of the control system having characteristic equations below using Routh-Hurwitz Stability Criterion.

i. 
$$s^5 + 2s^4 + 2s^3 + 4s^2 + 4s + 8 = 0$$

ii. 
$$s^4 + 5s^3 + 2s^2 + 3s + 1 = 0$$

d. A unity negative feedback control system has an open loop transfer function given as shown in the figure below.



For the system, determine

- i. The characteristic equation.
- ii. The range of K within which the system remains stable using Routh-Hurwitz Stability Criterion

[10 Marks]

#### **QUESTION FOUR**

a. State two effects of a negative feedback on a control system.

[2 marks]

- b. Draw a block diagram showing the mode of connection of the following types of compensation.
  - i. Series compensation
  - ii. Feedback compensation
  - iii. Load compensation

[6 marks]

c. A system has an open loop transfer function of  $G(s) = \frac{50}{s(1+0.25s)(1+0.1s)}$ 

Draw a bode diagram and hence determine the;

- i. Gain crossover frequency
- ii. Phase cross over frequency
- iii. Gain margin
- iv. Phase margin.

[12 Marks]

### **QUESTION FIVE**

a. State Four effects of a phase-lead compensator to a control system

[4 marks]

b. State the Nyquist stability criterion.

[2 marks]

c. State two merits and demerits of using Nyquist method when analyzing system stability.

[4 marks]

- d. Table below shows the frequency response of an open loop control system:
  - i. Plot the Nyquist diagram
  - ii. Determine the stability margins
  - iii. Comment on the stability of the system.

| ω(rad/sec)      | 2                 | 3                 | 4                 | 5                 | 6                 | 8     | 10    | 30    |
|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|-------|-------|
| Gain (dB)       | 2.8               | 1.9               | 1.3               | 0.9               | 0.68              | 0.4   | 0.26  | 0.12  |
| Phase angle (°) | -120 <sup>0</sup> | -130 <sup>0</sup> | -140 <sup>0</sup> | -149 <sup>0</sup> | -157 <sup>0</sup> | -170° | -180° | -2000 |

[12 marks]