

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF **BACHELOR OF TECHNOLOGY EDUCATION** IN **ELECTRICAL AND ELECTRONIC ENGINEERING**

COURSE CODE: **TEE 221**

COURSE TITLE: **ELECTRICAL MEASUREMENTS**

TIME: 12:00 NOON - 2:00 PM DATE: 14TH APRIL 2023

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages, Please Turn Over.

Question 1 (30mks)

- (a) i) List FIVE criteria for choosing the most suitable measuring [5mks] instrument for a given application.
 - *ii)* Defind the following terms with regards to instruments:

[5mks]

- i) Calibration
- ii) Traceabilility
- iii) Mesurand
- iv) Sensor
- v) Calibration chain
- (b) A Rotary Variable Differential Transformer (RVDT) has the following [3mks] data sheet information:

Ranges:

±30° linearity error ±0.5% full range

±60° linearity error ±2% full range

Sensitivity: 1.1 (mV/V input)/deg

Impedance: primary 750Ω , secondary 2000Ω

Input voltage: 3V

For an angular displacement input of 40°, determine:

i) the error due to non-linearity

[2mks]

ii) the output voltage reading

[1mk]

(c) The bridge of Fig. 1 has the following components:

Arm AB: Unknown inductance L_1 with resistance R_1

Arm BC: $R2 = 200\Omega$; Arm CD: $R3 = 100\Omega$

Bridge balance is obtained when $L_4 = 50mH$ and $R_4 = 2\Omega$

i) Derive the equations for the unknown values L_1 , and R_1

[4mks]

ii) Determine L_1 , R_1 and Q factor for $f = 50 \, Hz$.

[3mks]

Fig. 1

- (d) State the function of the following parts of a cathode ray oscilloscope: [4mks]
 - i) Cathode ray tube
 - ii) Trigger Circuit
 - iii) Time Base Generator
 - iv) Aquadag coating

A voltmeter having a sensitivity of $1k\Omega/V$ reads 100V on its 150V scale when connected across an unknown resistor R_X in series with a milli-ammeter as shown in Fig. 2. Determine the value of R_X (in $k\Omega$) when the milli-ammeter reads 5mA.

Fig. 2

Question 2 [20mks]

(a) Explain how a cathode ray oscilloscope (CRO) can be used to determine the dc voltage, rms voltage, current, phase difference and frequency of an ac signal.

[4mks] State FOUR differences between dual trace and dual beam oscilloscopes.

The Fig. 3 shows the waveforms of a dual channel CRO with vertical sensitivity and timebase settings.

Vertical sensitivity:

 V_1 : CH1 = 2V/div V_2 : CH2 = 5V/div

Timebase setting: 5ms/div

i) Determine the period and frequency of V₁ and V₂

[2mks]

[5mks]

[8mks]

[2mks]

ii) The peak to peak value of V₁ and V₂

[2mks]

iii) The rms value of V1 and V2

[2mks]

iv) The phase angle of V_1 relative to V_2

Question 3 (20mks)

- (a) With the aid of a circuit diagram, explain how Eddy current sensors [6mks] can detect variations in thickness of a moving aluminium sheet.
- Four Piezoelectric crystals of charge sensitivity = 2pC/N, area = $1cm^2$, 0.1 cm thickness and relative permittivity of 5, arranged in parallel under a platform and subjected to a force of 24N. Two metal electrodes measure changes in voltage in each crystal. Young's modulus of the crystal material is $E = 9 \times 10^{10} Pa$, and $\varepsilon_0 = 8.85 \times 10^{-12} F/m$

i) the voltage across the electrodes

[3mks]

ii) the change in crystal thickness

[4mks]

TEE 221 Electrical Measurements

Semester II 2022/2023

(c) A series circuit of Fig. 4 is connected to a 250V dc source. If R2 is [7mks] measured by voltmeters A and B having sensitivities of $500\Omega/V$ and $10k\Omega/V$ respectively. If both meters are used on the 150V range, determine the percentage error for each voltage measurement.

Question 4 (20mks)

- (a) With the aid of a well labelled block diagram, describe how current, [8mks] voltage and resistance measurements can be obtained with a digital multimeter.
- (b) An R-L-C series circuit is tuned using a Q-meter. The oscillator [4mks] frequency is 500kHz, shunt resistance is 0.5Ω , and variable capacitor set to 350pF. If the Q-value is 90, Calculate:
 - i) Effective inductance
 - ii) Coil resistance at resonance
- (c) Briefly describe with illustrations how Lissajous patterns can be used to determine the phase difference between two progressive waves.

Question 5 (20mks)

(a) The circuit in Fig. 5 is used to determine the inductance of the choke coil L_1 , R_1 . When the bridge is fed from a source of 500Hz, balance is obtained under the following conditions:

 $R_2 = 2410\Omega R_3 = 750\Omega C_4 = 0.35\mu F, R_4 = 64.5\Omega$

Fig. 5

- i) Derive the equations for the choke coil at balance conditions. [5mks]
- ii) Calculate the resistance and inductance of the choke coil.
- (b) The specifications of a strain gauge bonded load cell are given as:

Modulus of elasticity (E) E = 120Mpa

Load cell diameter 3.5*cm*

Strain gauge nominal resistance 600Ω

Gauge factor G = 3

Bridge voltage supply $V_s = 6V dc$

The strain gauge is aligned in the direction of tension and connected into a wheatstone bridge whose other arms have equal resistance of 300Ω . A galvanometer with current sensitivity of $5mm/\mu A$ and an internal resistance of 500Ω gives an offset of 3mV. If the load cell is subjected to a compressive axial force, determine the following:

- i) Percentage change in gauge resistance due to the applied force [4mks]
- ii) The magnitude of the applied force on the load cell [4mks]
- iii) Galvanometer deflection [4mks]

[3mks]