

(University of Choice)

MASINDE MULIRO UNIVERSITY OF MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN MEDICAL BIOTECHNOLOGY

COURSE CODE: BMB 423

COURSE TITLE: GENOMICS, PROTEOMICS & PROTEIN

DATE: 21ST APRIL 2023

TIME: 8.00 - 10.00AM

INSTRUCTIONS TO CANDIDATES

This paper is divided into three sections, **A B** and **C**, carrying respectively: Multiple Choice Questions (**MCQs**), Short Answer Questions (**SAQs**) and Long Answer Questions (**LAQs**). **Answer all questions**. **DO NOT WRITE ON THE QUESTION PAPER**.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

	ION A: Multiple Choice Questions (20 marks)		
1.	1. What properties of a protein does hydrophobic interaction chromatography exploit for		
	purification?		
	a. Charged amino acids		
	b. Hydrophobic amino acids on the protein surface		
	c. Molecular weight		
_	d. Enzyme activity		
2.	Which of the following methods could be used to check the molecular weight of your purified		
	protein?		
	a. SDS-PAGE only		
	b. Mass spectrometry only		
	c. Analytical SEC only		
2	d. All of the above		
3.	1		
	a. Phenotypic function		
	b. Cellular functionc. Molecular function		
1	d. Structural genomics		
4.	Sequencing of genomic DNA is included in a. Phenotypic function		
	b. Cellular function		
	c. Molecular function		
	d. Structural genomics		
5	Polyacrylamide gel electrophoresis uses to separate proteins.		
٥.	a. pressure difference		
	b. temperature difference		
	c. electric field		
	d. magnetic field		
6.	Proteins interacting with specific substances can be separated using		
	a. ion-exchange chromatography		
	b. paper chromatography		
	c. affinity chromatography		
	d. gel-filtration chromatography		
7.	What is the main enzyme component of Sanger sequencing?		
	a. Helicase		
	b. Polymerase		
	c. Nuclease		
	d. Gyrase		
8.	Which of the following is used by DNA polymerase as a substrate?		
	a. Sucrose		
	b. Lactose		
	c. Nucleotide		
	d. Nucleoside		
9.	Which of the following act as chain terminator?		
	a. Exogenous		
	b. DNA		
	c. Deoxynucleotides		

	d.	Dideoxynucleotides
10.		is a chemically synthesized oligonucleotide.
	a.	Klenow fragment
	b.	DNA
	c.	Primer
	d.	RNA
11.	Which	of the following analytical technique can be used to identify a chemical substance by the
	sorting	g of gaseous ions in electric and magnetic fields according to their mass-to-charge ratios?
		Raman spectroscopy
		Atomic spectroscopy
	c.	NMR spectroscopy
	d.	Mass spectroscopy
12.	Which	of the following is not a component of mass spectrometric technique?
	a.	Ion source
	b.	Analyzer
	c.	Detector
		X – ray source
13.	Which	component of the mass spectrometers separates the ion beams into its components?
	a.	Sample handling system
	b.	Ion source
		Detector
		Analyzer
14.	What i	s functional genomics is?
	a.	The study of how the genome, transcripts (genes), proteins and metabolites work together
		to produce a particular phenotype
	b.	The study of how gene expression relates to phenotype
	C.	The study of how genotype relates to phenotype
16 1	d.	The study of how protein expression relates to phenotype
15.	ımagın	e you are working on identifying RNAs that are bound by a RNA binding protein (RBP)
(oi inter	rest. Which strategy would you choose?
	a.	Both RIP-chip and RIP-seq could be appropriate
		None of the above
	c.	RNA immunoprecipitation(RIP)-chip
16 I		RIP-seq
10. 1	u DNA	is digested by endonucleases in four sites giving rise to fragments of which two are
	a.	n length how many bands would be seen after electrophoresis?
	a. b.	
	c.	
	d.	
17 F		
. / · L	a s	phoresis cannot be used to separate DNA
		RNA
		Amino acid
		Protein
	· · ·	

- 18. Which of the following statement is Incorrect about SnRNA?
 - a. It is small nuclear RNA
 - b. It helps in RNA splicing
 - c. It is also called snurps
 - d. It functions in RNA editing
- 19. What is the role of snoRNA in eukaryotes?
 - a. Chemical modification
 - b. RNA splicing
 - c. Act as adaptor RNA
 - d. Forms component of the ribosome
- 20. Name the class of RNA which takes part in RNA Editing?
 - a. snRNA
 - b. tRNA
 - c. gRNA
 - d. SiRNA

SECTION B: Short Answer Questions (40 marks)

- 1. Describe proteomics under the following titles
 - a. Definition (2marks)
 - b. Types of proteomics (3 marks)
 - c. Application of proteomics (5marks)
- 2. Explain the categories of mutagenesis in genomics (8marks)
- 3. Outline the procedure for Restriction fragment Length Polymorphism test in DNA renaturation techniques (8marks)
- 4. Explain the stages of proteome analysis (6 marks)
- 5. Explain the functional parts of Nuclear Magnetic Resonance (8marks)

SECTION C: Long Answer Questions (60 marks)

- 1. Explain different nucleic acid blotting techniques (20 marks)
- 2. Describe methods used for protein complex analysis (20 marks)
- 3. Explain the process CRIPR-Cas9 gene editing in DNA manipulation (20 marks)