

(University of Choice)

MASINDE MULIRO UNIVERSITY OF **SCIENCE AND TECHNOLOGY** (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

2022/2023

FIRST YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE

OF

MASTER OF SCIENCE (CHEMISTRY)

SCH 842 COURSE CODE:

COURSE TITLE: ADVANCED CHEMICALTHERMODYNAMICS

DATE: 11-04-2023

TIME: 8.00-11.00 AM

INSTRUCTIONS TO CANDIDATES

Answer all the Questions

TIME: 3 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (15 MARKS)

a. Given that
$$\bar{G}_{real} = \bar{G} + RT \ln \frac{f}{P}$$
, Show that $\ln f = \ln P + \int_0^P \left(\frac{\bar{V}_{real}}{RT} - \frac{1}{P}\right) dP$ (10 marks)

b. A satisfactory equation of state for ammonia is the modified Van der Waals equation $(P(\overline{V} - b) = RT)$, where b is 0.0379 L mol-1. Calculate the fugacity of the gas when pressure is 50 atm at 298K. Comment on the answer obtained (5 marks)

OUESTION TWO (15 MARKS)

a. Use the Gibbs-Duhem equation to show that the partial molar volume of a component B can be obtained if the partial molar volume of A is known for all compositions of interest. Do this by proving that $V_B = {V_B}^* - \int_{{V_A}^*}^{{V_A}} \frac{{X_A}}{{1 - {X_A}}} dV_A$

Use the following data at 298K to evaluate the integral graphically to find the partial molar volume of acetone at x = 0.500

$$x(CHCl_3)$$
 0 0.194 0.385 0.559 0.788 0.889 1.000 V_m/cm^3mol^{-1} 73.99 75.29 76.50 77.55 79.08 79.82 80.67

(15 marks)

QUESTION THREE (20 MARKS)

- a. What is the ionic strength I of a 1:1 electrolyte and 1:2 electrolyte at a concentration c? (5 marks)
- b. What is the activity coefficient of copper in a solution containing 10⁻⁴ mol dm⁻³ CuSO₄? (5 marks)
- c. Liquids A and B form an ideal solution at a certain temperature. Suggest a method for measuring the partial pressures of A and B at equilibrium (5 marks)

QUESTION FOUR (15 MARKS)

- a. A certain dilute solution has an osmotic pressure of 12.2 atm at 20°C. Calculate the difference between chemical potential of the solvent in the solution and that of pure water. Assume that the density is the same as that of water (5 marks)
- b. Explain why jams can be stored under atmospheric conditions for long periods of time without spoilage (5 marks)
- c. From the relationships among the van der Waals constants and the critical constants, show that

$$Z_C = \frac{P_c V_c}{RT_c} = 0.375$$
 where Z_C is the compressibility factor at the critical point.

(5 marks)