જમાં કહેતા વેલ (હ

ST 180

17 111

134

11 119

(4) (4) (5 11)

1 4 1 1

A AN ES A ENGAGEMENT CONTRACTOR

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITRY REGULAR EXAMINATIONS 2022/2023 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: CSE 212

COURSE TITLE: THEORY OF STRUCTURES II

DATE: 18TH APRIL 2023 TIME: 3-5 P.M

INSTRUCTIONS:

- 1. This paper contains Four questions
- 2. Answer Question One and any other TWO questions
- 3. Marks for each question are indicated in the parenthesis.
- 4. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (Compulsory) – 30 Marks

Why DE

111 1

[)3 en

- (a) What are statically indeterminate structures (2 marks)
- (b) State at least three advantages of statically indeterminate structures (3 marks)
- (c) Derive the slope-deflection equations using the moment area theorem. (10 marks)
- (d) Explain the two Castiglianos strain energy theorems. (5 marks)
- (e) What is second order analysis of structures and why is it important? (2 marks)
- (f) Describe what is Euler's critical load for axially loaded column with both ends pinned.
- (g) Find an expression for influence lines for the reactions moments and shear force at the supports A and B in the beam shown. (5 marks)

QUESTION TWO (20 Marks)

Use strain energy methods to analyze the statically indeterminate truss shown for reactions and member forces. EA is constant.

QUESTION THREE (20 Marks)

Determine the support moments and vertical reactions for the beam shown using moment distribution method. Hence draw the shear force and bending moment diagrams.

QUESTION FOUR (20 Marks)

Q4. Use three moment theorem to analyze the beam shown. Hence draw the shear force and bending moment diagrams

Examples of fixed end moments

$$M_{AB} = -\frac{wl^2}{12}$$
, $M_{BA} = \frac{wl^2}{12}$

$$M_{AB} = -\frac{Pab^2}{I^2}$$
, $M_{BA} = \frac{Pba^2}{I^2}$

Three moment equation for non-yielding supports

$$-6\left[\frac{A_{1}\overline{x_{1}}}{I_{1}L_{1}} + \frac{A_{2}\overline{x_{2}}}{I_{2}L_{2}}\right] = \frac{M_{A}L_{1}}{I_{1}} + 2M_{B}\left(\frac{L_{1}}{I_{1}} + \frac{L_{2}}{I_{2}}\right) + \frac{M_{C}L_{2}}{I_{2}}$$