
(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY
 (MMUST)

MAIN CAMPUS
UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
SECOND YEAR FIRST SEMESTER EXAMINATIONS
FOR THE BACHELORS DEGREE
IN
TECHNOLOGY EDUCATION (CIVIL AND STRUCTURAL ENGINEERING)

COURSE CODE: TEB 211
COURSE TITLE: THEORY OF STRUCTURES I
DATE: MONDAY 20TH JANUARY 2020 TIME: 8.00 - 10.00 AM

INSTRUCTIONS:

1. Answer Question ONE and any other TWO Questions
2. Marks for each question are indicated in the parenthesis.
3. Examination duration is $\mathbf{2}$ Hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 4 Printed Pages. Please Turn Over.

SECTION A (30 MARKS)

QUESTION 1

a) With the aid of sketches explain FOUR Structural Forms.
b) Differentiate between:
i. Pinned and roller support
ii. Simply supported and continuous beam
iii. Statically determinate and statically indeterminate structures.
c) Determine the degree of indeterminacy for the frames shown in Figure 1.

Fig 1a

Fig 1b
d) Calculate the force R_{A} and distance d for the beam shown in Figure 2. The mass of the beam should be neglected and equilibrium conditions assumed.

Figure 2
[10 Marks]
e) State the Castigliano's theorem and outline the assumptions made in its application [4 Marks]

SECTION B (40 MARKS)

QUESTION TWO (20 MARKS)
(a) The cross-sectional area of each member of the truss shown in Figure 3 is $\mathrm{A}=400 \mathrm{~mm}^{2}$ and $\mathrm{E}=200 \mathrm{GPa}$. Use method of virtual work.

Figure 3
i. Determine the vertical displacement of joint C if a $4-\mathrm{kN}$ force is applied to the truss at C .
[10 Marks]
ii. If no loads act on the truss, what would be the vertical displacement of joint C if member $A B$ were 5 mm too short?
[5 Marks]
(b) Draw the influence lines for the vertical reaction at D and the shear at E in Figure 4

Figure 4
[5 Marks]

QUESTION THREE (20 MARKS)

(a) A simply supported beam of length 10 m , carries the uniformly distributed load and two point loads as shown in Figure 5. Draw the shear force and bending moment diagrams for the beam. Also calculate the maximum bending moment.

Figure 5
[16 Marks]
(b) Define influence lines and state the Müller-Breslau principle
[4 Marks]

QUESTION FOUR (20 MARKS)

Determine the force in each member of the roof truss shown in the photo. The dimensions and loadings are shown in Figure 6. State whether the members are in tension or compression.

Figure 6
[20 Mark]

