

MASINDE MULIRO UNIVERSITY OFSCIENCE AND TECHNOLOGY

(MMUST)

Main CAMPUS

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

Semester II

THIRD YEAR MAIN EXAMINATION

(BSC Chemistry)

FOR THE DEGREE

OF

BACHELOR OF SCIENCE IN CHEMISTRY

COURSE CODE:

SCH 311

COURSE TITLE:

Chemistry of Lanthanides and Actinides

DATE:

19/4/2023

TIME: 12.00 - 2.00 PM

INSTRUCTIONS TO CANDIDATES

Answer all the Questions

Find the attached periodic table

TIME: 2 HOURS

MMUST observes ZERO tolerance to examination cheating

Question One (20 Marks)

- 1. (a) Using the provided electronic configurations of the lanthanides and actinides, **explain** why supposed and the observed electronic configurations are the same or they are different. (8 marks)
 - i. Samarium (Sm) supposed is $[Xe]_{54}4f^5$ 5d¹ 6s² and observed is $[Xe]_{54}4f^6$ 6s²
 - ii. Gadolinium (Gd) supposed is [Xe] $_{54}4f^7$ 5d 1 6s 2 and observed is [Xe] $_{54}4f^7$ 5d 1 6s 2
 - iii. Ytterbium (Yb) [Xe] $_{54}4f^{13}$ $5d^1$ $6s^2$ and observed is [Xe] $_{54}4f^{14}$ $6s^2$
 - iv. Actinium (Ac) supposed is $[Xe]_{54}f^0$ 6d¹ 7s² and observed is $[Xe]_{54}f^1$ 6d⁰ 7s²
- (b) Why are lanthanides so poor in forming complex molecules or ions? (3 marks) (c) State and explain the properties of lanthanides that depends on standard reduction potential values (E°) (9 Marks)
 - i. Reducing properties
 - ii. Electro-positive character
 - iii. Liberation of H₂ From water

Question two (18 marks)

- 1. a. Complete the following Actinides reactions by filling in the products depicted by a, b, c, d, e, f and g as observed in the actinides. (7 Marks)
 - i. $Ac(OH)_3 + 3HF + 700^{\circ}C \rightarrow a + b$
 - ii. $Ac_2O_3 + 6NH_4C1 + 250^{\circ}C \rightarrow c + 6NH_3 + d$
 - iii. $Ac2O_3 + 2AlBr_3 + 750^{\circ}C \rightarrow e + f$
 - iv. Th + $2I_2 + 400$ °C $\rightarrow g$
- b. Answer the following questions regarding the properties of Lanthanides
 - i. Complete the following equation by filling in the products depicted by A and B that shows this property

$$2Ln(s) + 6H2O(l) \rightarrow A(aq) + B(g)$$
 (2 Marks)

- ii. Explain what happens when Lanthanides are exposed to air. (2 Marks)
- iii. Complete the following equation that explains the lanthanide hydrides reaction

with water. $CeH_2 + 2H_2O \rightarrow A + B$

(2 Marks)

iv. Complete the following reaction

(2 Marks)

c. Indicate which of the following is true or false?

(3 marks)

- i. Lanthanides are comparable to alkaline earth metals in reactivity.
- ii. Lanthanides tarnish upon exposure to air.
- iii. The +3 oxidation state is commonly seen among lanthanides.

Question Three (18 Marks)

- 3. Multiple Choice questions: Choose the correct answer by indicating if it is a, b, c or d
- i. Which property of actinoids cannot be explained?
 - a) Radioactive
 - b) Oxidation
 - c) Magnetic
 - d) Acidic
- ii. Which is the most stable oxidation state of actinoids?
 - a) +2
 - b) +3
 - c) +4
 - d) +5
- iii. Actinoids are mostly attacked by which acid?
 - a) Hydrochloric acid
 - b) Nitric acid
 - c) Sulphuric acid
 - d) Boric acid
- iv. Which of the actinoids is used in the treatment of cancer?
 - a) Plutonium
 - b) Uranium
 - c) Curium
 - d) Thorium
- v. Which of the actinoids is used as a nuclear fuel?
 - a) Actinium
 - b) Thorium
 - c) Uranium
 - d) Californium
- vi. Which isotope of plutonium is used in nuclear bombs?
 - a) P-238
 - b) P-239
 - c) P-240
 - d) P-241
- vii. Choose the correct statement.
 - a) Both actinoids and lanthanoids are less basic
 - b) Both actinoids and lanthanoids do not show same oxidation of +3
 - c) Both actinoids and lanthanoids do not exhibit magnetic and spectral properties
 - d) Both actinoids and lanthanoids are electropositive
- viii. The element Lr3+ is

- a) Paramagnetic
- b) Diamagnetic
- c) Ferrimagnetic
- d) None of these

ix. Th4+ ion is of

- a) yellow colour
- b) red colour
- c) colourless
- d) pink colour
- x. The most important oxidation state of Thorium is
 - a) +4
 - b) +2
 - c) +5
 - d) +6
- (b). Explain the following general characteristics of Actinides:

i. Ionic radius

(4 marks)

ii. Complex formation.

(4 marks)

Question four (14 marks)

4. a. Discuss Four Major Applications of lanthanides

(4 marks)

- b. Mention two major uses of any actinides. Mention the actinide or the compound of interest. (4 marks)
- c. Which elements X, Y and Z are the parent elements that started the following decay series?, (6 Marks)

$$i. \quad X \qquad \xrightarrow[7\times10^{8}v]{\alpha} \xrightarrow{231} Th \xrightarrow[90]{\beta} \xrightarrow{231} Pa \xrightarrow[90]{\alpha} \xrightarrow[82]{\alpha} \xrightarrow{227} Ac \xrightarrow[90]{\alpha} \xrightarrow{227} Pb \xrightarrow{rapidly} \xrightarrow{7 \text{ steps}} \xrightarrow{207} Pb$$

$$ii. \quad Y \qquad \xrightarrow{\frac{\alpha}{4.5\times10^9y}} \overset{234}{\overset{90}{}} Th \xrightarrow{\frac{\beta}{24\text{ d}}} \overset{234}{\overset{91}{}} Pa \xrightarrow{\frac{\beta}{6.8\text{ h}}} \overset{234}{\overset{92}{}} U \xrightarrow{\frac{\alpha}{2.5\times10^9y}} \overset{230}{\overset{90}{}} Th \xrightarrow{\frac{\alpha}{8\times10^9y}} \overset{226}{\overset{226}{}} Ra \xrightarrow{\frac{\alpha}{1.6\times10^9y}} \overset{222}{\overset{86}{}} Rn \xrightarrow{\frac{8\text{ steps}}{82}} \overset{206}{\overset{20}{}} Pb$$

iii. Z
$$\xrightarrow{\alpha} {}^{228}_{88} Ra \xrightarrow{\beta} {}^{228}_{89} Ac \xrightarrow{\beta} {}^{228}_{90} Th \xrightarrow{\alpha} {}^{224}_{88} Ra \xrightarrow{rapidly} {}^{208}_{82} Pb$$

	L			3	L			1
	238.03	\subset	92	uranium	144.24	Z 0	60	neodymium
	[237]	Z	93	neplunium	[145]	Pm	61	promothirm
	[244]	Pu	94	plutonium	150.36	Sm	62	minemas
л	[243]	Am	95	americium	151.96		63	autonium
	[247]	Cm	96	curium	157.25	Gd	64	and dining
	[247]	BK	97	berkelium	158.93	占	65	1
	[251]	ರ್	98	californium	160 50	D V	dysprosium 66	
	12521	ES.	99	einsteinium	164 93	To	67	
İ				1				1

68 68 167.26 remium 100 78

Tm Yb
169 70
Tm Yb
168.93 173.04
man/aleyrium nobelium
101 102
Md No
12581 1259

Lantharum 57
La 138.91 actinium 89
Ac [227]

Ce 140.12 hodum

Paseodymium 59
Pr 140.91
protadinium 91
Pa 231.04

_			,																			_
123	7	87	132.91	Cs	55	caesium	ス	37	rubidium	7	₹ 2	potassium	22.990	<u> </u>	sodium	6.941		ω	1.0079	I	-	hydrogen
226	Ra	88	137.33	Ba	56	87.62 barium	S) မ္ဆ	strontium	2) 2	calcium	24.305 2 4.305	3 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	magnesium	9.0122	IJ D	4	harvllium			
	*	89-102		*	57-70																	
262	Ç	103	174.97		- 71	88.906	~	39	yttrium	000) 2	scandium										
[261]	곴	104	178.49	Ţ	72	91.224 hafnium	<u>Z</u> r	40	zirconium		: 22	litanium										
[262]	B	105	180.95	Ta	73	92,906 tantalum	S S	41	niobium	<	23	vanadium										
266	Sg	106	183.84	\$	74	95.94 hingsten	≤ 0	42	molybdenum	5	24	chromium										
[264]	Bh	107	186.21	Re	75	[98]	Tc	43	technetium	\begin{align*} \text{S}	25	manganese										
269	HS	108	190.23	80	76	101.07	R L	44	s5.845 rulhenium	T @	1 26	iron										•
_	Mt		_			_																,
[271]	Uun	ununnilium 110	195.08	סָ	78	106.42	Pd	46	58.693	2	28	nickel										;
[272]	UUU	unununium 111	196.97	Pu	90KI 79	107,87	Ag	47	63.546 sllver	CU	29	copper										
[277]	duU uub	ununbium 112	200.59	I O	mercury 80	112,41	Cd	48	65.39	7	1 ₃₀	zinc							:			i
			204.38		thallum 81	114.82	5	49	69.723	Ga) ين	26.982	A	13	10.811 aluminium	Ū	J	r uoloq				;
[289]	Uuq	ununquadium 114	207.2	00	ead 82	118.71	Sn	50	72.61	Ge	32	28.086	S	14	12.011	C) •	carbon				:
			208.98	<u>m</u>	bismuth 83	121.76	<u>8</u>	51	74.922	As	33	30,974	ס	15	14.007	Z	<u> </u>	nitrogen				į
			[209]	0	polonium 84	127.60	Te	52	78.96	Se	34	32.065	S	16	15.999	C) «	oxygen				•
			12101	∆	astatine 85	126.90		53	79.904	Ψ	35	35,453	<u>ဂ</u>	17	18,998	7	1 "	fluorine				:
		277	10001	70	radon 86	131.29	×	xenon	83.80	₹	36	39.948	٩r	18 18	20.180	Z O	10	neon	40006	丘,	helium 2	;