

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE

OF

MASTER OF SCIENCE (APPLIED MATHEMATICS)

COURSE CODE:

MAT 807

COURSE TITLE:

FUNCTIONAL ANALYSIS I

DATE:

Thursday, 27th April 2023

TIME: 2 pm - 5 pm

INSTRUCTIONS TO CANDIDATES
Answer ANY THREE questions

Time: 3 hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION ONE

(20 MARKS)

a. Let $\{e_1, e_2, ..., e_n\}$ be a linearly independent set of vectors in a normed linear space X of any finite dimension. Show that, in this case, there is a number c > 0 such that for every choice of scalars $\alpha_1, \alpha_2, ..., \alpha_n$ we have

 $\|\alpha_1 e_1 + \alpha_2 e_2 + ... + \alpha_n e_n\| \ge c(|\alpha_1| + |\alpha_2| + ... + |\alpha_n|), c > 0$ (15 marks)

b. Show that every finite dimensional normed linear space is complete. (5 marks)

QUESTION TWO

(20 MARKS)

Consider an operator $Tx(t) = \int_a^b k(t,s)x(s)ds$, with k(t,s) a continuous function of t and $s \ a \le t, s \le b$.

- i. Determine whether or not the operator T is a linear.
- ii. Determine whether T is bounded.
- iii. Find ||T||.

OUESTION THREE

(20 MARKS)

- a. Prove that if X is a normed linear space and Y is complete, then the space of bounded linear operators from X into Y is also complete.
- b. Let X be a normed linear space into over \mathbb{R} or \mathbb{C} . Show that if $A, B \in B(X, Y)$, then their product $AB \in B(X, Y)$ and $||AB|| \leq ||A|| ||B||$.
- c. Let $A: \mathbb{R}^m \to \mathbb{R}^n$ where \mathbb{R}^m and \mathbb{R}^n have the ℓ_1 -norm, $||x||_1 = \sum_{i=1}^m |\xi_i|$ for $x = (\xi_1, \xi_2, \dots, \xi_m)$, then $||A||_{\ell_1} = \max_{1 \le j \le n} \sum_{i=1}^n ||a_{ij}||$.

OUESTION FOUR

(20 MARKS)

- a. Suppose X is a linear space with inner product $\langle \cdot, \cdot \rangle$. If $x_n \to x$ and $y_n \to y$ as $n \to \infty$, prove that $\langle x_n, y_n \rangle \to \langle x, y \rangle$ as $n \to \infty$. (5 marks)
- b. Let X be a normed linear space. Prove that X is a Banach space if and only if the series $\sum_{n=1}^{\infty} a_n$ converges, where (a_n) is any sequence in X satisfying $\sum_{n=1}^{\infty} ||a_n|| < \infty$. (15 marks)

QUESTION FIVE

(20 MARKS)

- a. Let X be an inner product space and let $\{x_1, x_2, \dots, x_N\}$ be an orthonormal set. Prove that $\|x \sum_{n=1}^{N} c_n x_n\|$ is minimized by choosing $c_n = \langle x_n, x \rangle$. (7 marks)
- b. Show that ℓ_p , $1 \le p < \infty$ equipped with the $\|\cdot\|_p$ is a Banach space. (8 marks)
- c. State and prove Riesz Representation Theoerm. (5 marks)