

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST) (MAIN EXAMINATIONS)

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF

BACHELOR OF SCIENCE (SMT, SME, ETS, SPA, ETC, ETM, ETE) & BACHELOR **OF EDUCATION**

COURSE CODE:

MAT 304

COURSE TITLE:

COMPLEX ANALYSIS I

DATE: 19TH APRIL, 2023

TIME: 3.00 - 5.00 PM

Instructions to candidates:

Answers question ONE (COMPULSORY) and any other TWO questions.

Time: 2 hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

(5 Marks) a) Let z = 1 - i. Find z^{10} .

b) Find the Taylor series of Show that
$$f(z) = \cos z$$
 about $z = 0$ (3 Marks)

c) If
$$z = 4 + 3i$$
, determine z^3 in polar and Cartesian (4 Marks)

d) Determine the pole(s) and the residue(s) for
$$f(z) = \frac{1}{(1+z^2)(z+2)}$$
 (5 Marks)

e) Using the Cauchy-Riemann equations, show that $f(z) = z^3$ is analytic in the entire (3 Marks) z - plane

f) Express
$$\frac{1+2i}{1-3i}$$
 in the form $r(\cos\theta+i\sin\theta)$ (5 Marks)

g) Prove that
$$u = e^x(x\sin y - y\cos y)$$
 is harmonic (5 Marks)

OUESTION TWO (20MARKS)

- a) Prove Cauchy-Riemann equations for the function $f(z) = z^2 5z + 1$ (7 Marks)
- b) The real part of a complex function f(z) is $u(x, y) = x^3 3xy^2$, find

i.
$$v(x,y)$$
 so that $f(x,y) = u + iv$ is analytic

ii. Express
$$f(x, y)$$
 in terms of z (7 Marks)

c) Show that the function $w = e^z$ is analytic in the entire complex plane. (6 Marks)

QUESTION THREE (20MARKS)

a) Evaluate
$$\int_0^{1+i} (x-y+ix^2)dz$$
 (10 Marks)

Along the straight line from z = 0 to z = 1 + i

Along the real axis from z = 0 to z = 1 and then along a line parallel to ii. the imaginary axis from z = 1 to z = 1 + i

Along the imaginary axis from z = 0 to z = i and then along a line iii. parallel to the real axis from z = i to z = 1 + i.

b) Evaluate
$$\int_{C} \frac{z+1}{z^3-4z} dz$$
 where c is (10 Marks)

i.
$$|z+2| = \frac{3}{2}$$

ii. $|z-2| = \frac{3}{2}$

ii.
$$|z-2| = \frac{3}{2}$$

QUESTION FOUR (20MARKS)

a) Find the residues of $f(z) = \frac{z^2 + 2z}{(z+1)^2(z^2+4)}$ at all its poles and hence evaluate $\oint_C f(z) dz$ (10 Marks)

b) Find the first four terms of a Tylor's series expansion of the function

$$f(z) = \frac{1}{(z-1)(z-3)}$$
 (10 Marks)

QUESTION FIVE (20MARKS)

a) If
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
 and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ prove
$$\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)$$
 (4 Marks)

b) Using the definition of limits, show that:-

$$\lim_{z \to i} (7z - 1) = 7i - 1$$
i) (3 Marks)

$$\lim_{z \to 1} (2z+1) = 3$$
 (3 Marks)

- c) Find the image of the right half plane $X \ge 0$ under the mapping $W = \frac{z-1}{z+1}$ (5 Marks)
- d) Find the Laurent series expansion for $f(z) = \frac{1}{z(z+1)^3}$ about the pole z=-2 (5 Marks)