

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATION

2022/2023 ACADEMIC YEAR

(MAIN EXAMINATIONS)

FIRST YEAR SECOND SEMESTER EXAMINATION

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ENGINEERING (MIE, ECE, CSE & BTB)

COURSE CODE:

MAT 103/162

COURSE TITLE:

PURE MATHEMATICS II

DATE: 24th April, 2023

TIME: 8: 00 AM - 10: 00 AM

INSTRUCTIONS TO CANDIDATES:

- Answer Question ONE (COMPULSORY) and ANY OTHER TWO questions.
- Do not write on the question paper.

Time: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This paper consists of 3 printed pages. Please turn over.

QUESTION ONE (COMPULSORY)

[30 MARKS]

(a) Using matrix method solve the following simultaneous equations

[4 marks]

$$3x + 5y = 7$$
$$4x - 3y = 19$$

(b) Given two matrices **A** and **B**, simplify $(A - B)^2 + (2B - A)^2 + 3BA$

[3 marks]

(c) Evaluate $\int \cos (3x+7) dx$

[3 marks]

- (d) A particle moves in a straight line so that after t seconds its acceleration is given by $a(t) = (6t 12) \ m/s^2$. If its position at time t = 0 is 2 m and the velocity is 9 m/s;
 - (i) Determine velocity at any time t.

[3 marks]

(ii) Find the displacement at any time t.

[2 marks]

(e) Evaluate $(2+i)^3 + (2-i)^2$

[3 marks]

(f) Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 7 & 11 \end{bmatrix}$

[3 marks]

(g) Evaluate the integral by partial fractions

5 marks

$$\int \frac{5}{x^2 - x - 6} \ dx$$

(h) Find the value of x such that the determinant of $|\mathbf{A}| = 12$, if $A = \begin{bmatrix} x^2 & 2 \\ 6+x & 2 \end{bmatrix}$ [4 marks]

QUESTION TWO

[20 MARKS]

- (a) Determine the equation of the tangent line to the graph of $x^2 3xy + 2y^2 2x 4 = 0$ at point (1, -1) [4 marks]
- (b) Divide 3 + 4i by 7 3i

[3 marks]

(c) If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$$
 $B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ Verify that

(i) (AB)C = A(BC)

[4 marks]

(ii)
$$A(B+C) = AB + AC$$

[4 marks]

(d) Find
$$x$$
, y if $(2+i)^3 + (3-i)(x-iy) = x+iy$

[4 marks]

(e) Prove that
$$|B| = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = 1$$

[1 mark]

QUESTION THREE

[20 MARKS]

(a) Find $(1 - i\sqrt{3})^5$ using De Moivre's theorem

[4 marks]

- (b) Given the matrix $A = \begin{bmatrix} 1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2 \end{bmatrix}$ Find
 - (i) The determinant of A.

[2 marks]

(ii) Matrices of minors and Co-factors of A.

[5 marks]

(iii) Adjoint of A and inverse of A.

[2 marks]

(c) Convert 1+i into polar form

[3 marks]

(d) Find the derivative of $y = (x^2 + 1)^3(x^3 + 3)^2$ using appropriate method

[4 marks]

QUESTION FOUR

[20 MARKS]

(a) Solve the following system of equations using Cramer's rule

[7 marks]

$$5x - 7y + z = 11$$

$$6x - 8y - z = 15$$

$$3x + 2y - 6z = 7$$

(b) Evaluate $\int \sin^5 \theta \ d\theta$

[4 marks]

(c) Differentiate the functions

(i)
$$y = 3\sin 4x - \cos^2 x$$

[3 marks]

(ii)
$$y = 3xe^{5x} + \sin x^2$$

[3 marks]

(iii)
$$y = ln(3x^2 + 2x) + e^{x^2}$$

[3 marks]

QUESTION FIVE

[20 MARKS]

(a) Evaluate the derivative

[3 marks]

$$f(x) = \frac{x^2 + 2}{x^3 - 3}$$

(b) Evaluate the definite integral

[3 marks]

$$\int_{-2}^{3} (4-x^2) dx$$

(c) Find the six roots of z = -8 and graph these roots in the complex plane.

[5 marks]

- (d) Given the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ Show that $A^2 4A 5I = 0$, where I is a unit matrix and 0 in a null matrix and 0 in a null matrix of order 3 respectively. [6 marks]
- (e) Find the area bounded by the curve $y=4e^{2x}$ between x=-1 and $x=\frac{1}{2}$

[3 marks]