

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

MAIN EXAMINATIONS FOR

FOURTH YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE (SME/SMT)

COURSE CODE:

MAT 402

COURSE TITLE:

MEASURE THEORY

DATE: TUESDAY 25TH APRIL, 2023 TIME: 12.00-2.00P.M

Instructions to candidates:

Answer Question one and any other two questions.

Time:

2 hours

This paper consists of 3 printed pages. Please turn

QUESTION ONE (30 MARKS)

- a) Define the term Lebesgue measure. (2 Marks)
- b) Show that if $E \in \mathcal{M}$ then for any given $\epsilon > 0$, there exists a closed set $F \subset E$ such that $m(E \setminus F) < \epsilon$. (4 Marks)
- c) If f and g are measurable functions defined on $E \in \mathcal{M}$. Prove that f + g is also measurable. (6 Marks)
- d) If $\{f_n\}$ is a sequence of non-negative measurable functions and $\{f_n: n \ge 1\}$ increases monotonically to f(x) for each x that is $f_n \nearrow f$ pointwise, show that (6 Marks)

$$\lim_{n\to\infty}\int\limits_E f_n(x)\;dm=\int\limits_E f\;dm$$

- e) Prove that if f is a measurable function, then the level set $\{x: f(x) = a\}$ is measurable for every $a \in \mathbb{R}$. (4 Marks)
- f) Investigate the convergence of

$$\int_{a}^{\infty} \frac{n^2 x e^{-n^2 x^2}}{1 + x^2} dx$$

For a > 0, and for a = 0.

(6 Marks)

g) State the Dominated Convergence Theorem.

(2 Marks)

QUESTION TWO (20 MARKS)

a) Suppose f is a non-negative measurable function prove that f = 0 a.e. if and only if (7 Marks)

$$\int_{\mathbb{D}} f \, dm = 0$$

b) Show that for a sequence of non-negative measurable functions f_n we have

(6 Marks)

$$\int \sum_{n=1}^{\infty} f_n \ dm = \sum_{n=1}^{\infty} \int f_n \ dm.$$

- c) If f and g are integrable, $f \le g$, prove that $\int f \, dm \le \int g \, dm$. (4 Marks)
- d) Distinguish between an inner measure and an outer measure. (3 Marks)

QUESTION THREE (20 MARKS)

a) Use the dominated convergence theorem to find (4 Marks)

$$\lim_{n\to\infty}\int\limits_{1}^{\infty}f_{n}(x)dx.$$

- b) Find a formula describing $m(A \cup B)$ and $m(A \cup B \cup C)$ in terms of measures of the individual sets and their intersections. (5 Marks)
- c) Suppose that $A_n \in \mathcal{M}$ for all $n \geq 1$. If $A_n \subset A_{n+1}$, for all n, show that (11 Marks)

$$m(\bigcup_{n} A_n) = \lim_{n \to \infty} m(A_n)$$

QUESTION FOUR (20 MARKS)

- a) Let E be a measurable subset of \mathbb{R} . Show that
 - i) $f: E \to \mathbb{R}$ is a measurable subset if and only if both f^+ and f^- are measurable.

(5 Marks)

ii) If f is measurable, then so is |f| but the converse is false.

(5 Marks)

b) Show that if *f* is measurable, then the truncation of *f*

$$f^{a}(x) = \begin{cases} a & \text{if } f(x) > a \\ f(x) & \text{if } f(x) \le a \end{cases}$$

is also measurable.

(5 Marks)

c) Find a non-measurable function f such that f^2 is measurable.

(5 Marks)

QUESTION FIVE (20 MARKS)

a) Suppose $\{f_n\}$ and f are non-negative and measurable. If $\{f_n\}$ increases to f almost everywhere, show that

$$\int_{E} f_{n}dm \nearrow \int_{E} f dm$$

For all measurable sets E.

(8 Marks)

b) If $\{f_n\}$ is a sequence of non-negative measurable functions, show that (12 Marks)

$$\liminf_{n\to\infty} \int_{E} f_n dm \ge \int_{E} \left(\liminf_{n\to\infty} f_n \right) dm$$