

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

(MAIN EXAMINATIONS)

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE
OF
BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

MAT 408

COURSE TITLE: FIELD THEORY

DATE: TUESDAY 20TH APRIL, 2023 TIME: 12.00-2.00P.M

Instructions to candidates:

Attempt Question ONE and ANY other TWO Questions.

Time: 2 hours

QUESTION ONE (30 MARKS)

- a) Define a field and show that every field is an integral domain while the converse need not hold. (5 Marks)
- b) Given an integral domain D, use localization at a saturated subset of D to construct the quotient field over D. (5Marks)
- c) Let F be a field. Suppose F and $f(x) \in F[x]$ is an irreducible polynomial, show that there exists a field K containing F and an element α satisfying $f(\alpha) = 0$. Use an example to demonstrate the construction of a field extension of a finite field of order 2. (7Marks)
- d) Define a Frobenius map. Show that a Frobenius map on a field F of characteristic p is an endomorphism. (4Marks)
- e) Show that a homomorphism defined on the ring $(\mathbb{Z},+,\cdot)$ is either a zero homomorphism or an identity map. (4Marks)
- f) State Eisenstein's criterion. Hence or otherwise, show that $x^2 + y^2 1 \in \mathbb{Q}[x, y]$ is irreducible. (5Marks)

QUESTION TWO (20 MARKS)

a) What is an algebraic element? Let E and F be fields such that E is a subfield of F. Suppose $a \in F$, show that a is algebraic over E if and only if [E(a): E] is finite.

(5Marks)

- b) Let E, F, G be fields such that $E \subseteq F \subseteq G$. Prove that [G:E] is finite if both [F:E] and [G:F] are finite and [G:E] = [G:F][F:E] (6Marks)
- c) State Gauss' Lemma. Use the Lemma to prove that $\sqrt{2}$ is irrational (4Marks)
- d) Using an example, show that every ideal I of a ring R is a subring of R and the converse is not necessarily true. (5Marks)

QUESTION THREE (20 MARKS)

- a) Let R be a principal Ideal Domain. If f, g are primitives in R[x], show that fg is also primitive in R[x].

 (4Marks)
- b) Consider a finite number of points say S in the Euclidean plane and some $T \subseteq S$. When is T said to be constructible in S? Demonstrate your argument. (5Marks)

- c) Let S be a non-empty set and P(S) be the power set of S. Show that the binary operations of intersection and union are closed on P(S) so that $(P(S), \cup, \cap)$ is a magma. Moreover, suppose multiplication on P(S) is defined by \cap and addition by $\circ: A \circ B = (A \cup B) \setminus (A \cap B)$, by setting $S = \mathbb{Z}_2$, show that $(P(\mathbb{Z}_2), \circ, \cap)$ forms a ring with identity. (5Marks)
- d) Let F be an arbitrary field. Show that there exists a unique linear map $D: F(x) \to F(x)$ satisfying
 - i. D(fg) = f.D(g) + D(f).g
 - ii. D(1) = 0
 - iii. D(x) = 1 (3Marks)
- e) Define: Euclidean Domain, Principal Ideal Domain, Unique Factorization Domain (3Marks)

QUESTION FOUR (20 MARKS)

- a) Let f be an irreducible polynomial over a perfect field F of characteristic p. Show that f has no repeated roots in the extension field of F. (7Marks)
- b) Show that a finite subgroup of a multiplicative group of a finite field is cyclic. **(7Marks)**
- c) Let F be a field of characteristic p. Suppose a is an algebraic element in F, show that a is separable in F if F(a)=F(b) for some b in F. (6Marks)

QUESTION FIVE (20 MARKS)

- a) Let q be a prime power (p^n) . Show that the polynomial $x^{q^n} x$ is a product of monic irreducible polynomials over $GF(p^n)$ whose degrees divide n (5Marks)
- b) Prove the following statements

(5Marks)

- i. Every polynomial of odd degree over \mathbb{R} has a root in \mathbb{R}
- ii. Every positive real number has a positive square root
- iii. Every complex number has a complex square root
- c) State the Fundamental Theorem of Galois Theory

(4Marks)

d) Differentiate between a normal extension and a separable extension

(3Marks)

e) Consider the ring $\mathbb{Z}\Big[\sqrt{d}\,\Big] = \Big\{a + b\sqrt{d} : a, b \in \mathbb{Z}\Big\}$ with $\psi(a + b\sqrt{d}) = \Big|a^2 - b^2d\Big|$. Show that $\mathbb{Z}\Big[\sqrt{d}\,\Big]$ is a Euclidean Domain for d = -2, -1, 2, 3. (3Marks)

END OF EXAMINATION: GOOD LUCK