

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE

IN

MASTER OF SCIENCE (PURE MATHEMATICS)

COURSE CODE:

MAT 804

COURSE TITLE:

ABSTRACT INTEGRATION II

DATE: 27TH APRIL, 2023

TIME: 8.00AM - 11.00AM

INSTRUCTIONS TO CANDIDATES

Section A is compulsory any other THREE questions from section B

• Do all the rough work in the answer booklet

TIME: 3 hours

QUESTION ONE (20 MARKS)

- a) Show that if $\phi(E) = \int_E f d\mu$ where $\int f d\mu$ is defined then ϕ is a signed measure. (5 Marks)
- b) Define the following terms:
 - i) Positive set
 - ii) Null set (4 Marks)
- c) Let ν be a signed measure on [X, S]. Show that there exist measures ν^+ and ν^- on [X, S] such that $\nu = \nu^+ \nu^-$ and $\nu^+ \perp \nu^-$. The measures ν^+ and ν^- and uniquely defined by ν and $\nu = \nu^+ \nu^-$ is said to be the Jordan decomposition of ν . (8 Marks)
- d) Show that the signed measure ν is finite or σ -finite respectively if and only if $|\nu|$ is also, or if and only if, both ν^+ and ν^- are. (3 Marks)

QUESTION TWO (20 MARKS)

- a) Let f be a non-negative $S \times \mathcal{J}$ -measurable function and let $\phi(x) = \int_Y f_x d\nu$, $\psi(y) = \int_X f^y d\mu$ for each $x \in X$, $y \in Y$, show that ϕ is S -measurable and $\int_X \phi d\mu = \int_{X \times Y} f d(\mu \times \nu) = \int_Y f^y d\nu$. (6 Marks)
- b) Let $f(x) = \sqrt{x}$, $0 \le x \le \frac{1}{2}$. Let f(1) = 0 and define f to be linear on $\left[\frac{1}{2}, 1\right]$. Let f(x + k) = f(x) for each $k \in \mathbb{Z}$ and each x. Show that f is continuous on \mathbb{R} but not absolutely continuous. (4 Marks)
- c) If E_i , i = 1, ..., n are disjoint intervals such that $\bigcup_{i=1}^n E_i \subseteq I$, where I is an interval, Show that $\sum_{i=1}^n \mu(E_i) \le \mu(I)$. (5 Marks)
- d) Let f be a finite-valued monotone increasing function defined on (a, b). Show that
 - i) $g(x) = f(x^{-})$ is left-continous and monotone on (a, b).
 - ii) $h(x) = f(x^+)$ is right-continous and monotone on (a, b).
 - If μ is a finite measure on $[\mathbb{R}, \mathcal{B}]$, $g(x) = \mu(-\infty, x)$ and $h(x) = \mu(-\infty, x]$ then $h(x) = g(x^+)$. (6 Marks)

OUESTION THREE (20 MARKS)

- a) Show that the following conditions on the signed measure μ and ν on [X, S] and equivalent.
 - i) $\nu \leq \mu$
 - ii) $|\nu| \leq |\mu|$
 - iii) $v^+ \le \mu$ and $v^- \le \mu$ (6 Marks)
- b) If [X, S] is a σ -finite measure space and ν is a σ -finite measure on S such that $\nu \leq \mu$, then there exists a finite-valued non negative measurable function f on X such that for each $E \in S$, $\nu(E) = \int_E f \, d\mu$. Also f is unique in the sense that if $\nu(E) = \int_E g \, d\mu$ for each $E \subset S$, Show that $f = g(\mu)$ a.e. (14 Marks)

QUESTION FOUR (20 MARKS)

- a) Let f and g be absolutely continuous on the finite interval [a, b]. Show that fg is absolutely continuous on [a, b]. (4 Marks)
- b) Let f be a measurable function from $[X, S, \mu]$ to \mathbb{R} and g a Borel measurable function on \mathbb{R} . Show that $\int g \ d\mu f^{-1} = \int f \circ g \ d\mu$, in the sense that if either exists, so does the other and the tw are equal. (5 Marks)
- c) Show that if $f \in L(-\infty, \infty)$, then g defined by g(x) = f(-x) is an integrable function and $\int_a^b f \, dx = \int_{-b}^{-a} g \, dx$ for $-\infty \le a < b \le \infty$. (4 Marks)
- d) What is a positive linear fuctional? (2 Marks)
- e) Show that if $f, g \in C(I)$, $f \ge g$ and G is a positive linear functional on C(I), then $G(f) \ge G(g)$. (5 Marks)

OUESTION FIVE (20 MARKS)

- a) Show that the condition $f \in L(\mu \times \nu)$ in Fubini's theorem is necessary if the order of integration is to be interchangeable. (7 Marks)
- b) Let μ be a σ -finite measure and ν a σ -finite signed measure and let $\nu \ll \mu$, show that $\frac{d|\nu|}{d\mu} = \left|\frac{d\nu}{d\mu}\right| \quad [\mu]. \tag{4 Marks}$

c) Prove that a countable union of sets positive with respect to a signed measure ν is a positive set. (6 Marks)

d) State the Lebesgue decomposition theorem.

(3 Marks)